zoukankan      html  css  js  c++  java
  • Go Deeper HDU

    Go Deeper

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 3435    Accepted Submission(s): 1125


    Problem Description
    Here is a procedure's pseudocode:

    go(int dep, int n, int m)
    begin
    output the value of dep.
    if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
    end

    In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?
     
    Input
    There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤ m) line of them are ai-1 ,bi-1 and ci-1 (0 ≤ ai-1, bi-1 < n, 0 ≤ ci-1 ≤ 2).
     
    Output
    For each test case, output the result in a single line.
     
    Sample Input
    3 2 1 0 1 0 2 1 0 0 0 2 2 0 1 0 1 1 2
     
    Sample Output
    1 1 2
     
    Author
    CAO, Peng
     
    Source
     
    Recommend
    zhouzeyong
     
     
     
    解析:
      一定要明确 是哪两个点
      然后建图一定要明确怎么建
      二分定要写对
     
    #include <iostream>
    #include <cstdio>
    #include <sstream>
    #include <cstring>
    #include <map>
    #include <cctype>
    #include <set>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <algorithm>
    #include <cmath>
    #include <bitset>
    #define rap(i, a, n) for(int i=a; i<=n; i++)
    #define rep(i, a, n) for(int i=a; i<n; i++)
    #define lap(i, a, n) for(int i=n; i>=a; i--)
    #define lep(i, a, n) for(int i=n; i>a; i--)
    #define rd(a) scanf("%d", &a)
    #define rlld(a) scanf("%lld", &a)
    #define rc(a) scanf("%c", &a)
    #define rs(a) scanf("%s", a)
    #define pd(a) printf("%d
    ", a);
    #define plld(a) printf("%lld
    ", a);
    #define pc(a) printf("%c
    ", a);
    #define ps(a) printf("%s
    ", a);
    #define MOD 2018
    #define LL long long
    #define ULL unsigned long long
    #define Pair pair<int, int>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define _  ios_base::sync_with_stdio(0),cin.tie(0)
    //freopen("1.txt", "r", stdin);
    using namespace std;
    const int maxn = 1e5 + 10, INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
    int n, m;
    int a[maxn], b[maxn], c[maxn];
    vector<int> G[maxn];
    int sccno[maxn], low[maxn], vis[maxn], scc_clock, scc_cnt;
    stack<int> S;
    void init()
    {
        for(int i = 0; i < maxn; i++) G[i].clear();
        mem(sccno, 0);
        mem(low, 0);
        mem(vis, 0);
        scc_clock = scc_cnt = 0;
    }
    
    void dfs(int u)
    {
        low[u] = vis[u] = ++scc_clock;
        S.push(u);
        for(int i = 0; i < G[u].size(); i++)
        {
            int v = G[u][i];
            if(!vis[v])
            {
                dfs(v);
                low[u] = min(low[u], low[v]);
            }
            else if(!sccno[v])
                low[u] = min(low[u], vis[v]);
        }
        if(vis[u] == low[u])
        {
            scc_cnt++;
            for(;;)
            {
                int x = S.top(); S.pop();
                sccno[x] = scc_cnt;
                if(x == u) break;
            }
        }
    }
    
    void build(int mid)
    {
        for(int i = 0; i <= mid; i++)
        {
            if(c[i] == 2)
            {
                G[a[i] << 1 | 1].push_back(b[i] << 1);
                G[b[i] << 1 | 1].push_back(a[i] << 1);
            }
            else if(c[i] == 1)
            {
                G[a[i] << 1 | 1].push_back(b[i] << 1 | 1);
                G[b[i] << 1 | 1].push_back(a[i] << 1 | 1);
                G[a[i] << 1].push_back(b[i] << 1);
                G[b[i] << 1].push_back(a[i] << 1);
            }
            else if(c[i] == 0)
            {
                G[a[i] << 1].push_back(b[i] << 1 | 1);
                G[b[i] << 1].push_back(a[i] << 1 | 1);
            }
        }
    }
    
    bool check()
    {
        for(int i = 0; i < n * 2; i += 2)
            if(sccno[i] == sccno[i + 1])
                return false;
        return true;
    }
    
    int main()
    {
        int T;
        rd(T);
        while(T--)
        {
            init();
            rd(n), rd(m);
            for(int i = 0; i < m; i++)
            {
                rd(a[i]), rd(b[i]), rd(c[i]);
            }
            int l = 0, r = m;
            while(l + 1 < r)
            {
                init();
                int mid = (l + r) / 2;
                build(mid);
                for(int i = 0; i < n * 2; i++)
                    if(!vis[i]) dfs(i);
                if(check()) l = mid;
                else r = mid;
            }
            pd(l + 1);
    
        }
    
        return 0;
    }
     
     
     

    Go Deeper

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 3435    Accepted Submission(s): 1125


    Problem Description
    Here is a procedure's pseudocode:

    go(int dep, int n, int m)
    begin
    output the value of dep.
    if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
    end

    In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?
     
    Input
    There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤ m) line of them are ai-1 ,bi-1 and ci-1 (0 ≤ ai-1, bi-1 < n, 0 ≤ ci-1 ≤ 2).
     
    Output
    For each test case, output the result in a single line.
     
    Sample Input
    3 2 1 0 1 0 2 1 0 0 0 2 2 0 1 0 1 1 2
     
    Sample Output
    1 1 2
     
    Author
    CAO, Peng
     
    Source
     
    Recommend
    zhouzeyong
     
    自己选择的路,跪着也要走完。朋友们,虽然这个世界日益浮躁起来,只要能够为了当时纯粹的梦想和感动坚持努力下去,不管其它人怎么样,我们也能够保持自己的本色走下去。
  • 相关阅读:
    [转]rdlc报表中表达式的使用--switch和IIF范例
    [转]关于ASP.NET(C#)程序中TEXTBOX下动态DIV跟随[AJAX应用]
    CodeForces
    NYOJ306 走迷宫(dfs+二分搜索)
    全心全意为人民服务体如今我们软件设计上
    2014年麦克阿瑟基金奖,张益唐入围(62万美金用于个人支配)
    Android中SharedPreferences函数具体解释
    drupal7中CKEditor开启上传图片功能
    JBoss+Ant实现EJB无状态会话bean实例
    c#读取xml文件配置文件Winform及WebForm-Demo具体解释
  • 原文地址:https://www.cnblogs.com/WTSRUVF/p/9796628.html
Copyright © 2011-2022 走看看