zoukankan      html  css  js  c++  java
  • Go Deeper HDU

    Go Deeper

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 3435    Accepted Submission(s): 1125


    Problem Description
    Here is a procedure's pseudocode:

    go(int dep, int n, int m)
    begin
    output the value of dep.
    if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
    end

    In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?
     
    Input
    There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤ m) line of them are ai-1 ,bi-1 and ci-1 (0 ≤ ai-1, bi-1 < n, 0 ≤ ci-1 ≤ 2).
     
    Output
    For each test case, output the result in a single line.
     
    Sample Input
    3 2 1 0 1 0 2 1 0 0 0 2 2 0 1 0 1 1 2
     
    Sample Output
    1 1 2
     
    Author
    CAO, Peng
     
    Source
     
    Recommend
    zhouzeyong
     
     
     
    解析:
      一定要明确 是哪两个点
      然后建图一定要明确怎么建
      二分定要写对
     
    #include <iostream>
    #include <cstdio>
    #include <sstream>
    #include <cstring>
    #include <map>
    #include <cctype>
    #include <set>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <algorithm>
    #include <cmath>
    #include <bitset>
    #define rap(i, a, n) for(int i=a; i<=n; i++)
    #define rep(i, a, n) for(int i=a; i<n; i++)
    #define lap(i, a, n) for(int i=n; i>=a; i--)
    #define lep(i, a, n) for(int i=n; i>a; i--)
    #define rd(a) scanf("%d", &a)
    #define rlld(a) scanf("%lld", &a)
    #define rc(a) scanf("%c", &a)
    #define rs(a) scanf("%s", a)
    #define pd(a) printf("%d
    ", a);
    #define plld(a) printf("%lld
    ", a);
    #define pc(a) printf("%c
    ", a);
    #define ps(a) printf("%s
    ", a);
    #define MOD 2018
    #define LL long long
    #define ULL unsigned long long
    #define Pair pair<int, int>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define _  ios_base::sync_with_stdio(0),cin.tie(0)
    //freopen("1.txt", "r", stdin);
    using namespace std;
    const int maxn = 1e5 + 10, INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
    int n, m;
    int a[maxn], b[maxn], c[maxn];
    vector<int> G[maxn];
    int sccno[maxn], low[maxn], vis[maxn], scc_clock, scc_cnt;
    stack<int> S;
    void init()
    {
        for(int i = 0; i < maxn; i++) G[i].clear();
        mem(sccno, 0);
        mem(low, 0);
        mem(vis, 0);
        scc_clock = scc_cnt = 0;
    }
    
    void dfs(int u)
    {
        low[u] = vis[u] = ++scc_clock;
        S.push(u);
        for(int i = 0; i < G[u].size(); i++)
        {
            int v = G[u][i];
            if(!vis[v])
            {
                dfs(v);
                low[u] = min(low[u], low[v]);
            }
            else if(!sccno[v])
                low[u] = min(low[u], vis[v]);
        }
        if(vis[u] == low[u])
        {
            scc_cnt++;
            for(;;)
            {
                int x = S.top(); S.pop();
                sccno[x] = scc_cnt;
                if(x == u) break;
            }
        }
    }
    
    void build(int mid)
    {
        for(int i = 0; i <= mid; i++)
        {
            if(c[i] == 2)
            {
                G[a[i] << 1 | 1].push_back(b[i] << 1);
                G[b[i] << 1 | 1].push_back(a[i] << 1);
            }
            else if(c[i] == 1)
            {
                G[a[i] << 1 | 1].push_back(b[i] << 1 | 1);
                G[b[i] << 1 | 1].push_back(a[i] << 1 | 1);
                G[a[i] << 1].push_back(b[i] << 1);
                G[b[i] << 1].push_back(a[i] << 1);
            }
            else if(c[i] == 0)
            {
                G[a[i] << 1].push_back(b[i] << 1 | 1);
                G[b[i] << 1].push_back(a[i] << 1 | 1);
            }
        }
    }
    
    bool check()
    {
        for(int i = 0; i < n * 2; i += 2)
            if(sccno[i] == sccno[i + 1])
                return false;
        return true;
    }
    
    int main()
    {
        int T;
        rd(T);
        while(T--)
        {
            init();
            rd(n), rd(m);
            for(int i = 0; i < m; i++)
            {
                rd(a[i]), rd(b[i]), rd(c[i]);
            }
            int l = 0, r = m;
            while(l + 1 < r)
            {
                init();
                int mid = (l + r) / 2;
                build(mid);
                for(int i = 0; i < n * 2; i++)
                    if(!vis[i]) dfs(i);
                if(check()) l = mid;
                else r = mid;
            }
            pd(l + 1);
    
        }
    
        return 0;
    }
     
     
     

    Go Deeper

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 3435    Accepted Submission(s): 1125


    Problem Description
    Here is a procedure's pseudocode:

    go(int dep, int n, int m)
    begin
    output the value of dep.
    if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
    end

    In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?
     
    Input
    There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤ m) line of them are ai-1 ,bi-1 and ci-1 (0 ≤ ai-1, bi-1 < n, 0 ≤ ci-1 ≤ 2).
     
    Output
    For each test case, output the result in a single line.
     
    Sample Input
    3 2 1 0 1 0 2 1 0 0 0 2 2 0 1 0 1 1 2
     
    Sample Output
    1 1 2
     
    Author
    CAO, Peng
     
    Source
     
    Recommend
    zhouzeyong
     
    自己选择的路,跪着也要走完。朋友们,虽然这个世界日益浮躁起来,只要能够为了当时纯粹的梦想和感动坚持努力下去,不管其它人怎么样,我们也能够保持自己的本色走下去。
  • 相关阅读:
    51Nod1136--欧拉函数
    ubuntu裸机镜像问题
    汉诺塔问题
    lwm2m协议
    WPF自定义控件与样式(4)-CheckBox/RadioButton自定义样式
    图解大顶堆的构建、排序过程
    WindowsService开发简单入门
    数据结构和算法参考网址
    c#创建windows服务入门教程实例
    C#比较两个对象是否为同一个对象。 Visual Studio调试器指南---多线程应用程序调试(一)
  • 原文地址:https://www.cnblogs.com/WTSRUVF/p/9796628.html
Copyright © 2011-2022 走看看