zoukankan      html  css  js  c++  java
  • 线性变换

      线性空间中有许多变换,其中一种叫做线性变换。记住:并不是在线性空间中的变换都是线性变换!!

    一、定义

    设σ是数域F上线性空间V的一个变换,如果对于V中任意的元素α,β和数域F中任意的数k,总有

    (1)σ(α+β)=σ(α)+σ(β);

    (2)σ(kα)=kσ(α),

    则称σ为线性空间V的一个线性变换。(这和信号与系统中的定义一样,只不过这里是向量而已)

    二、性质

    (1)若σ为线性变换,则σ(0)=0;σ(-α)=-σ(α)(α属于V)

    (2)线性变换保持线性组合关系,即对V中任意向量α1,α2,...,αn及数域F中任意数k1,k2,k3,...,ks,总有

      σ(k1α1+k2α2+...+ksαs)=k1σ(α1)+k2σ(α2)+...+k3σ(α3)

    (3)线性变换σ把线性相关向量组化为线性相关向量组,即若α1,α2,...,αs是V中线性相关向量组,则σ(α1),σ(α2),...,σ(αs)也一定是相关的

    (4)若σ,ς都是线性变换,则σ+ς,σς都是线性变换;对于k属于F,kσ也是线性关系

    (5)若σ是可逆线性变换,则σ-1也是可逆线性变换

    三、线性变换与矩阵的对应关系

      在取定基下,数域F上n维线性空间的线性变换与数域F上的n阶矩阵是一一对应的。同一线性变换在不同基下的矩阵是相似的。

    参考文献

    吉林大学教材《线性代数》

  • 相关阅读:
    怎样用HTML5 Canvas制作一个简单的游戏
    js面向对象
    javascript闭包
    javascript变量的作用域
    5-22
    5-23
    14-5-21 硬代码
    14-5-19 类和对象
    array
    生成干扰线
  • 原文地址:https://www.cnblogs.com/Wanggcong/p/4734622.html
Copyright © 2011-2022 走看看