zoukankan      html  css  js  c++  java
  • 数学图形(1.8) 圆外旋轮线

    外旋轮线(Epitrochoid) 是追踪附着在围绕半径为 R 的固定的圆外侧滚转的半径 r 的圆上的一个点而得到的转迹线,这个点距离外部滚动的圆的中心的距离是 d

    相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.该软件免费开源.QQ交流群: 367752815

    圆外旋轮线(随机圈)

    vertices = 10000
    a = rand2(1, 10)
    r = rand2(1, 10)
    m = a/r
    t = from 0 to (160*PI)
    x = r*[(m+1)*cos(t) - cos((m+1)*t)]
    y = r*[(m+1)*sin(t) - sin((m+1)*t)]

    最初版本:这是我没有看数学方面的资源时写的版本.

    vertices = 12000
    a = rand2(8, 64)
    b = rand2(4, 64)
    c = a + b
    s = c / b
    o = rand2(4, b)
    
    i = from 0 to (100*2*PI)
    j = mod(i, 2*PI)
    k = mod(s*i, 2*PI)
    
    m = a*sin(j)
    n = a*cos(j)
    
    x = m + o*sin(k)
    y = n + o*cos(k)

    圆外旋轮线(N圈)

    vertices = 10000
    a = 10.3
    r = 5.1
    m = a/r
    t = from 0 to (160*PI)
    x = r*[(m+1)*cos(t) - cos((m+1)*t)]
    y = r*[(m+1)*sin(t) - sin((m+1)*t)]

    圆外旋轮线(10圈)

    vertices = 1000
    
    r = 10.0
    m = 10
    t = from 0 to (2*PI)
    x = r*[m*cos(t) - cos(m*t)]
    y = r*[m*sin(t) - sin(m*t)]

    圆外旋轮面(10圈)

    vertices = D1:512 D2:100
    
    u = from 0 to (2*PI) D1
    v = from -2.0 to 2.0 D2
    
    r = 10.0
    m = 10
    x = r*[m*cos(u) - v*cos(m*u)]
    y = r*[m*sin(u) - v*sin(m*u)]

  • 相关阅读:
    pytorch之dataloader深入剖析
    Pytorch多GPU并行处理
    鸡汤:做灯泡的
    数据工程师
    软实力
    七拼八凑的读书感
    深入一点儿
    Session的生命周期
    cloudera项目源代码
    Storm实时计算系统
  • 原文地址:https://www.cnblogs.com/WhyEngine/p/3824272.html
Copyright © 2011-2022 走看看