zoukankan      html  css  js  c++  java
  • 数学图形之圆柱面

    这一节将为你展示如何生成圆柱面,以及和圆柱面相关的图形,如鼓形,齿轮等

    相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.

    我之前写过生成圆柱的C++程序,代码发布在柱台(Cylinder)图形的生成算法.

    (1)圆柱面

    vertices = dimension1:72 dimension2:72
    
    u = from 0 to (2*PI) dimension1
    v = from (-5) to (5) dimension2
    
    r = 5
    
    x = r*cos(u)
    y = v
    z = r*sin(u)

    (2)任意角度圆柱面

    vertices = dimension1:72 dimension2:72
    u = from (-5) to (5) dimension2
    v = from 0 to (2*PI) dimension1
    
    a = rand2(0, 2*PI)
    b = rand2(0, 2*PI)
    
    c = sin(v)
    d = cos(v)
    
    e = sin(b)
    f = cos(b)
    
    g = sin(a)
    h = cos(a)
    
    x = f*h*d - f*g*c + e*u
    y = g*d + h*c
    z = -e*h*d + e*g*c + f*u
    
    x = x*5
    y = y*5
    z = z*5

    代码中会随机设置圆柱的旋转角度

    (3)圆柱体

    将圆柱面的两头封上,生成闭合的圆柱体

    vertices = dimension1:72 dimension2:72
    
    u = from 0 to (2*PI) dimension1
    v = from (-5) to (5) dimension2
    
    r = if(abs(v) < 4.9, 5, 0)
    
    x = r*cos(u)
    y = v
    z = r*sin(u)

    (4)由曲线生成的圆柱面

    #http://www.mathcurve.com/surfaces/cylindrederevolution/cylindrederevolution.shtml
    vertices = D1:100 D2:100
    u = from 0 to (2*PI) D1
    v = from 0 to (PI) D2
    a = rand2(1, 10)
    x = a*cos(u - v)
    z = a*sin(u - v)
    y = a*( u+v)

    (5)鼓形

    我之前写过生成鼓形的C++程序,代码发布在鼓状物(Drum)图形的生成算法

    这里和之前的不太一样,为了简单,我对鼓的隆起使用了SIN函数.

    vertices = dimension1:72 dimension2:72
    
    u = from 0 to (2*PI) dimension1
    v = from (-1) to (1) dimension2
    
    r = 5
    h = rand2(1, r)
    
    t = h*cos(v*PI/2)
    p = if(t > 0.01, r+t, 0) 
    
    x = p*cos(u)
    y = v*h
    z = p*sin(u)

    新的鼓形脚本,这个比上一个要圆润得多:

    vertices = dimension1:72 dimension2:72
    
    u = from 0 to (2*PI) dimension1
    v = from (-PI/2) to (PI/2) dimension2
    
    r = 5
    h = rand2(1, r)
    
    t = h*cos(v)
    p = if(t > 0.01, r+t, 0) 
    
    x = p*cos(u)
    y = h*sin(v)
    z = p*sin(u)

    (6)齿轮

    我之前写过生成齿轮的C++程序,代码发布在齿轮(Gear Wheel)图形的生成算法

    vertices = D1:65 D2: 4
    
    u = from 0 to (2*PI) D1
    v = from -1 to 1 D2
    
    k = from 0 to 64 D1
    
    m = mod(k, 2)
    
    r = 10.0 + m*2
    
    a = 0.9
    
    b = in_range(v, -a, a)
    
    x = r*sin(u)*b
    z = r*cos(u)*b
    
    y = if(b, v, v/3)*3

    (7)刺柱

    为什么我看到这个有刺的柱子,会想到满清十大酷刑.

    vertices = D1:129 D2:65
    
    u = from 0 to (2*PI) D1
    v = from (-20) to (20) D2
    
    n = 4
    
    a = from 0 to 128 D1
    b = from 0 to 64 D2
    
    t = (mod(a, n) + mod(b, n))/n*4
    
    r = 10 + t
    
    x = r*cos(u)
    y = v
    z = r*sin(u)

    (8)蛏形

    vertices = D1:100 D2:100
    u = from 0 to (2*PI) D1
    v = from -5 to 5 D2
    
    r = 5
    
    x = r*cos(u)
    z = r*sin(u)
    y = x*v

    (9)指定方向的圆柱(极坐标原理)

    vertices = dimension1:72 dimension2:72
    
    u = from (0) to (5) dimension2
    v = from 0 to (2*PI) dimension1
    
    a = rand2(-2, 2)
    b = rand2(-2, 2)
    c = rand2(-2, 2)
    
    ac = sqrt(a*a + c*c)
    angleY = atan2(ac, b)
    angleXZ = atan2(a,c)
    
    m = cos(v)
    n = sin(v)
    
    e = sin(angleY)
    f = cos(angleY)
    
    g = sin(angleXZ)
    h = cos(angleXZ)
    
    x0 = m
    y0 = u*f - n*e
    z0 = u*e + n*f
    
    x1 = x0*h + z0*g
    y1 = y0
    z1 = -x0*g + z0*h
    
    x = x1 + a
    y = y1 + b
    z = z1 + c

    (10)指定方向的圆柱(矩阵原理)

    vertices = dimension1:72 dimension2:72
    
    u = from (0) to (5) dimension2
    v = from 0 to (2*PI) dimension1
    
    a = rand2(-2, 2)
    b = rand2(-2, 2)
    c = rand2(-2, 2)
    
    len = sqrt(a*a + b*b + c*c)
    len = max(len, 0.00001)
    px = a/len
    py = b/len
    pz = c/len
    
    qx = 0
    qy = pz
    qz = -py 
    len = sqrt(qx*qx + qy*qy + qz*qz)
    len = max(len, 0.00001)
    qx = qx/len
    qy = qy/len
    qz = qz/len
    
    wx = py*qz - pz*qy
    wy = pz*qx - px*qz
    wz = px*qy - py*qx
    
    x0 = cos(v)
    y0 = u
    z0 = sin(v)
    
    x = x0*wx + y0*px + z0*qx + a
    y = x0*wy + y0*py + z0*qy + b
    z = x0*wz + y0*pz + z0*qz + c

  • 相关阅读:
    ORACLE定时备份
    解压cpio.gz
    Fusioncharts的数字格式化
    linux apache+php+mysql安装及乱码解决办法
    两个Beta函数类型的积分及其一般形式
    【转载】巴塞尔问题(Basel Problem)的多种解法
    两本关于各种刁钻积分计算的书
    一个超几何函数类型的积分
    一个取整函数积分的一般形式
    Clausen Functions (and related series, functions, integrals)
  • 原文地址:https://www.cnblogs.com/WhyEngine/p/3867220.html
Copyright © 2011-2022 走看看