Problem
Solution
Splay模板题
要记录从左往右的最大和,从右往左的最大和,整个区间内的最大和
Notice
注意0的大坑。
Code
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 500000;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
queue<int> Q;
int root, num, tx, X[N + 5];
struct node
{
int val[N + 5], Max[N + 5], Left[N + 5], Right[N + 5], son[2][N + 5], parent[N + 5], Sum[N + 5], Size[N + 5], rev[N + 5], cover[N + 5];
void up(int u)
{
if (!u) return;
Left[u] = max(Left[son[0][u]], Sum[son[0][u]] + val[u] + max(Left[son[1][u]], 0));
Right[u] = max(Right[son[1][u]], Sum[son[1][u]] + val[u] + max(Right[son[0][u]], 0));
Max[u] = max(max(Max[son[0][u]], Max[son[1][u]]), max(0, Right[son[0][u]]) + val[u] + max(0, Left[son[1][u]]));
Sum[u] = Sum[son[0][u]] + Sum[son[1][u]] + val[u];
Size[u] = Size[son[0][u]] + Size[son[1][u]] + 1;
}
void Reverse(int x)
{
if (!x) return;
swap(son[0][x], son[1][x]);
swap(Left[x], Right[x]);
rev[x] ^= 1;
}
void Recover(int u, int z)
{
if (!u) return;
val[u] = cover[u] = z;
Sum[u] = Size[u] * z;
Left[u] = Right[u] = Max[u] = max(z, Sum[u]);
}
void down(int u)
{
if (!u) return;
if (rev[u])
{
Reverse(son[0][u]), Reverse(son[1][u]);
rev[u] = 0;
}
if (cover[u] != -INF)
{
Recover(son[0][u], cover[u]);
Recover(son[1][u], cover[u]);
cover[u] = -INF;
}
}
int pick()
{
if (!Q.empty())
{
int t = Q.front();
Q.pop();
return t;
}
else return ++num;
}
int Find(int u, int t)
{
down(u);
if (t == Size[son[0][u]] + 1) return u;
else if (t <= Size[son[0][u]]) return Find(son[0][u], t);
else return Find(son[1][u], t - Size[son[0][u]] - 1);
}
void Newnode(int &u, int from, int v)
{
u = pick();
parent[u] = from, val[u] = v, Size[u] = 1;
Left[u] = Right[u] = Max[u] = val[u];
cover[u] = -INF, rev[u] = 0;
}
void Rotate(int x, int &rt)
{
int y = parent[x], z = parent[y];
int l = (son[1][y] == x), r = 1 - l;
if (y == rt) rt = x;
else if (son[0][z] == y) son[0][z] = x;
else son[1][z] = x;
parent[x] = z;
parent[son[r][x]] = y, son[l][y] = son[r][x];
parent[y] = x, son[r][x] = y;
up(y), up(x);
}
void Splay(int x, int &rt)
{
while (x != rt)
{
int y = parent[x], z = parent[y];
if (y != rt)
{
if ((son[0][z] == y) ^ (son[0][y] == x))
Rotate(x, rt);
else Rotate(y, rt);
}
Rotate(x, rt);
}
}
void Split(int l, int r)
{
int x = Find(root, l - 1 + 1), y = Find(root, r + 1 + 1);
Splay(x, root), Splay(y, son[1][root]);
}
void Build(int &u, int l, int r, int from)
{
int mid = (l + r) >> 1;
Newnode(u, from, X[mid]);
if (l < mid) Build(son[0][u], l, mid - 1, u);
if (r > mid) Build(son[1][u], mid + 1, r, u);
up(u);
}
void Insert(int x, int y)
{
Split(x + 1, x);
Build(son[0][son[1][root]], 1, y, son[1][root]);
up(son[1][root]), up(root);
}
void Delete(int &u)
{
if (!u) return;
Q.push(u);
parent[u] = 0;
Delete(son[0][u]), Delete(son[1][u]);
Left[u] = Right[u] = Max[u] = -INF, Sum[u] = 0;
u = 0;
}
}Splay_tree;
int sqz()
{
int n = read(), m = read();
rep(i, 1, n) X[i] = read();
Splay_tree.Max[0] = Splay_tree.Left[0] = Splay_tree.Right[0] = -INF, Splay_tree.Sum[0] = 0;
X[0] = X[n + 1] = 0; tx = n;
Splay_tree.Build(root, 0, n + 1, 0);
char st[15];
int x, y, z;
while (m--)
{
scanf("%s", st);
switch (st[0])
{
case 'I' : x = read(), y = read(); rep(i, 1, y) X[i] = read();
tx += y, Splay_tree.Insert(x, y); break;
case 'D' : x = read(), y = read(), Splay_tree.Split(x, x + y - 1), tx -= y;
Splay_tree.Delete(Splay_tree.son[0][Splay_tree.son[1][root]]); Splay_tree.up(Splay_tree.son[1][root]), Splay_tree.up(root); break;
case 'M' :
if (st[2] == 'K')
{
x = read(), y = read(), z = read();
Splay_tree.Split(x, x + y - 1);
Splay_tree.Recover(Splay_tree.son[0][Splay_tree.son[1][root]], z);
}
else
{
Splay_tree.Split(1, tx);
printf("%d
", Splay_tree.Max[Splay_tree.son[0][Splay_tree.son[1][root]]]);
}
break;
case 'R' : x = read(), y = read(); Splay_tree.Split(x, x + y - 1), Splay_tree.Reverse(Splay_tree.son[0][Splay_tree.son[1][root]]); break;
case 'G' : x = read(), y = read(), Splay_tree.Split(x, x + y - 1);
printf("%d
", Splay_tree.Sum[Splay_tree.son[0][Splay_tree.son[1][root]]]); break;
}
}
return 0;
}