zoukankan      html  css  js  c++  java
  • [BZOJ1500]维修数列

    Problem

    Solution

    Splay模板题
    要记录从左往右的最大和,从右往左的最大和,整个区间内的最大和

    Notice

    注意0的大坑。

    Code

    #include<cmath>
    #include<queue>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define sqz main
    #define ll long long
    #define reg register int
    #define rep(i, a, b) for (reg i = a; i <= b; i++)
    #define per(i, a, b) for (reg i = a; i >= b; i--)
    #define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
    const int INF = 1e9, N = 500000;
    const double eps = 1e-6, phi = acos(-1.0);
    ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
    ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
    void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
    queue<int> Q;
    int root, num, tx, X[N + 5];
    struct node
    {
        int val[N + 5], Max[N + 5], Left[N + 5], Right[N + 5], son[2][N + 5], parent[N + 5], Sum[N + 5], Size[N + 5], rev[N + 5], cover[N + 5];
        void up(int u)
        {
            if (!u) return;
            Left[u] = max(Left[son[0][u]], Sum[son[0][u]] + val[u] + max(Left[son[1][u]], 0));
            Right[u] = max(Right[son[1][u]], Sum[son[1][u]] + val[u] + max(Right[son[0][u]], 0));
            Max[u] = max(max(Max[son[0][u]], Max[son[1][u]]), max(0, Right[son[0][u]]) + val[u] + max(0, Left[son[1][u]]));
            Sum[u] = Sum[son[0][u]] + Sum[son[1][u]] + val[u];
            Size[u] = Size[son[0][u]] + Size[son[1][u]] + 1;
        }
        void Reverse(int x)
        {
            if (!x) return;
            swap(son[0][x], son[1][x]);
            swap(Left[x], Right[x]);
            rev[x] ^= 1;
        }
        void Recover(int u, int z)
        {
            if (!u) return;
            val[u] = cover[u] = z;
            Sum[u] = Size[u] * z;
            Left[u] = Right[u] = Max[u] = max(z, Sum[u]);
        }
        void down(int u)
        {
            if (!u) return;
            if (rev[u])
            {
                Reverse(son[0][u]), Reverse(son[1][u]);
                rev[u] = 0;
            }
            if (cover[u] != -INF)
            {
                Recover(son[0][u], cover[u]);
                Recover(son[1][u], cover[u]);
                cover[u] = -INF;
            }
        }
    
        int pick()
        {
            if (!Q.empty())
            {
                int t = Q.front();
                Q.pop();
                return t;
            }
            else return ++num;
        }
        int Find(int u, int t)
        {
            down(u);
            if (t == Size[son[0][u]] + 1) return u;
            else if (t <= Size[son[0][u]]) return Find(son[0][u], t);
            else return Find(son[1][u], t - Size[son[0][u]] - 1);
        }
    	void Newnode(int &u, int from, int v)
    	{
    	    u = pick();
    	    parent[u] = from, val[u] = v, Size[u] = 1;
    	    Left[u] = Right[u] = Max[u] = val[u];
    	    cover[u] = -INF, rev[u] = 0;
    	}
    
    	void Rotate(int x, int &rt)
    	{
    		int y = parent[x], z = parent[y];
    		int l = (son[1][y] == x), r = 1 - l;
    		if (y == rt) rt = x;
    		else if (son[0][z] == y) son[0][z] = x;
    		else son[1][z] = x;
    		parent[x] = z;
    		parent[son[r][x]] = y, son[l][y] = son[r][x];
    		parent[y] = x, son[r][x] = y;
    		up(y), up(x);
    	}
    	void Splay(int x, int &rt)
    	{
    		while (x != rt)
    		{
    			int y = parent[x], z = parent[y];
    			if (y != rt)
    			{
    				if ((son[0][z] == y) ^ (son[0][y] == x))
    					Rotate(x, rt);
    				else Rotate(y, rt);
    			}
    			Rotate(x, rt);
    		}
    	}
    
        void Split(int l, int r)
        {
            int x = Find(root, l - 1 + 1), y = Find(root, r + 1 + 1);
            Splay(x, root), Splay(y, son[1][root]);
        }
    	void Build(int &u, int l, int r, int from)
    	{
    	    int mid = (l + r) >> 1;
    	    Newnode(u, from, X[mid]);
    	    if (l < mid) Build(son[0][u], l, mid - 1, u);
    	    if (r > mid) Build(son[1][u], mid + 1, r, u);
    	    up(u);
    	}
    	void Insert(int x, int y)
    	{
    	    Split(x + 1, x);
    	    Build(son[0][son[1][root]], 1, y, son[1][root]);
    	    up(son[1][root]), up(root);
    	}
        void Delete(int &u)
        {
            if (!u) return;
            Q.push(u);
            parent[u] = 0;
            Delete(son[0][u]), Delete(son[1][u]);
            Left[u] = Right[u] = Max[u] = -INF, Sum[u] = 0;
            u = 0;
        }
    }Splay_tree;
    
    int sqz()
    {
        int n = read(), m = read();
        rep(i, 1, n) X[i] = read();
        Splay_tree.Max[0] = Splay_tree.Left[0] = Splay_tree.Right[0] = -INF, Splay_tree.Sum[0] = 0;
        X[0] = X[n + 1] = 0; tx = n;
        Splay_tree.Build(root, 0, n + 1, 0);
        char st[15];
        int x, y, z;
        while (m--)
        {
            scanf("%s", st);
            switch (st[0])
            {
                case 'I' : x = read(), y = read(); rep(i, 1, y) X[i] = read();
                         tx += y, Splay_tree.Insert(x, y); break;
                case 'D' : x = read(), y = read(), Splay_tree.Split(x, x + y - 1), tx -= y;
                        Splay_tree.Delete(Splay_tree.son[0][Splay_tree.son[1][root]]); Splay_tree.up(Splay_tree.son[1][root]), Splay_tree.up(root); break;
                case 'M' :
                            if (st[2] == 'K')
                            {
                                x = read(), y = read(), z = read();
                                Splay_tree.Split(x, x + y - 1);
                                Splay_tree.Recover(Splay_tree.son[0][Splay_tree.son[1][root]], z);
                            }
                            else
                            {
                                Splay_tree.Split(1, tx);
                                printf("%d
    ", Splay_tree.Max[Splay_tree.son[0][Splay_tree.son[1][root]]]);
                            }
                            break;
                case 'R' : x = read(), y = read(); Splay_tree.Split(x, x + y - 1), Splay_tree.Reverse(Splay_tree.son[0][Splay_tree.son[1][root]]); break;
                case 'G' : x = read(), y = read(), Splay_tree.Split(x, x + y - 1);
                        printf("%d
    ", Splay_tree.Sum[Splay_tree.son[0][Splay_tree.son[1][root]]]); break;
            }
        }
        return 0;
    }
    
    
  • 相关阅读:
    Python 生成器相关知识
    openpyxl 模块学习记录
    Python 装饰器相关知识
    Python 闭包的相关知识
    Python 内置函数简单介绍
    Git提交的本地仓库在什么位置
    支付宝公钥,私钥加密解密问题
    字符转义
    pyhton 模拟浏览器实现
    大小端模式 大端存储 小端存储
  • 原文地址:https://www.cnblogs.com/WizardCowboy/p/7629021.html
Copyright © 2011-2022 走看看