zoukankan      html  css  js  c++  java
  • [HDU1890]RoboticSort

    Problem

    每次找到最小值,然后把它和它前面的数翻转,然后找第二小数······
    然后输出这些数的下标。

    Solution

    用splay维护,每次找到最小值,然后翻转前面区间。

    Notice

    细节操作巨烦无比。

    Code

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define sqz main
    #define ll long long
    #define reg register int
    #define rep(i, a, b) for (reg i = a; i <= b; i++)
    #define per(i, a, b) for (reg i = a; i >= b; i--)
    #define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
    const int INF = 1e9, N = 100000;
    const double eps = 1e-6, phi = acos(-1.0);
    ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
    ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
    void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
    int point = 0, root, pre, suf, ans, x[N + 5];
    struct Node
    {
        int val, id;
    }T[N + 5];
    struct node
    {
    	int val[N + 5], son[2][N + 5], parent[N + 5], Min[N + 5], Size[N + 5], rev[N + 5];
    	inline void up(int u)
    	{
    	    Size[u] = Size[son[0][u]] + Size[son[1][u]] + 1;
    	    Min[u] = val[u];
    	    if (son[0][u]) Min[u] = min(Min[u], Min[son[0][u]]);
    	    if (son[1][u]) Min[u] = min(Min[u], Min[son[1][u]]);
    	}
    	inline void down(int u)
    	{
    	    if (rev[u])
            {
                swap(son[0][u], son[1][u]);
                rev[son[0][u]] ^= 1, rev[son[1][u]] ^= 1;
                rev[u] = 0;
            }
    	}
    	void Newnode(int &u, int from, int v)
    	{
    	    u = ++point;
    	    son[0][u] = son[1][u] = 0;
    	    Min[u] = val[u] = v;
    	    Size[u] = 1, rev[u] = 0;
    	    parent[u] = from;
    	}
    	void Build(int &u, int l, int r, int from)
    	{
    	    int mid = (l + r) >> 1;
    	    Newnode(u, from, x[mid]);
    	    if (l < mid) Build(son[0][u], l, mid - 1, u);
    	    if (r > mid) Build(son[1][u], mid + 1, r, u);
    	    up(u);
    	}
    	void Init(int n)
    	{
    	    root = point = 0;
    	    son[0][0] = son[1][0] = parent[0] = Size[0] = rev[0] = 0;
    	    Min[0] = val[0] = N;
    	    Newnode(root, 0, N);
    	    Newnode(son[1][root], root, N);
    	    Build(son[0][son[1][root]], 1, n, son[1][root]);
    	    up(son[1][root]);
    	    up(root);
    	}
    
    	void Rotate(int x, int &rt)
    	{
    		int y = parent[x], z = parent[y];
    		int l = (son[1][y] == x), r = 1 - l;
    		if (y == rt) rt = x;
    		else if (son[0][z] == y) son[0][z] = x;
    		else son[1][z] = x;
    		parent[x] = z;
    		parent[son[r][x]] = y, son[l][y] = son[r][x];
    		parent[y] = x, son[r][x] = y;
    		up(y), up(x);
    	}
    	void Splay(int x, int &rt)
    	{
    		while (x != rt)
    		{
    			int y = parent[x], z = parent[y];
    		    down(z), down(y), down(x);
    			if (y != rt)
    			{
    				if ((son[0][z] == y) ^ (son[0][y] == x))
    					Rotate(x, rt);
    				else Rotate(y, rt);
    			}
    			Rotate(x, rt);
    		}
    	}
    
    	void Delete(int x)
    	{
    		Splay(x, root);
    		if (son[0][x] * son[1][x] == 0) root = son[0][x] + son[1][x];
    		else
    		{
    		    down(x);
    			int t = son[1][x];
    			down(t);
    			while (son[0][t] != 0) t = son[0][t], down(t);
    			Splay(t, root);
    			son[0][t] = son[0][x], parent[son[0][x]] = t;
    			up(t);
    		}
    		parent[root] = 0;
    	}
    
        int Find(int u, int num)
        {
            if (num == Size[son[0][u]] + 1) return u;
            else if (num <= Size[son[0][u]]) return Find(son[0][u], num);
            else return Find(son[1][u], num - Size[son[0][u]] - 1);
        }
    	int Find_Min(int u, int tt)
    	{
    	    down(u);
    	    if (val[u] == tt) return Size[son[0][u]] + 1;
    	    else if (Min[son[0][u]] == tt) return Find_Min(son[0][u], tt);
    	    else return Size[son[0][u]] + 1 + Find_Min(son[1][u], tt);
    	}
    }Splay_tree;
    int cmp(Node X, Node Y)
    {
        return X.val < Y.val ||(X.val == Y.val && X.id < Y.id);
    }
    int sqz()
    {
        int n;
        while (scanf("%d", &n) && n)
        {
            rep(i, 1, n) T[i].val = read(), T[i].id = i;
            sort(T + 1, T + n + 1, cmp);
            rep(i, 1, n) x[T[i].id] = i;
            Splay_tree.Init(n);
            rep(i, 1, n - 1)
            {
                int t = Splay_tree.Find_Min(root, i);
                printf("%d ", t + i - 2);
                Splay_tree.Splay(Splay_tree.Find(root, 1), root);
                Splay_tree.Splay(Splay_tree.Find(root, t), Splay_tree.son[1][root]);
                Splay_tree.rev[Splay_tree.son[0][Splay_tree.son[1][root]]] ^= 1;
                Splay_tree.Delete(Splay_tree.Find(root, t));
            }
            printf("%d
    ", n);
        }
    }
    
  • 相关阅读:
    传输层——UDP报文头介绍
    传输层——TCP报文头介绍
    网络层——IP报文头介绍
    数据链路层——以太网包头介绍
    POJ2752 (Seek the Name, Seek the Fame,kmp)
    POJ2406 Power Strings
    HNOI2008 玩具装箱toy (BZOJ1010,斜率dp)
    Covered Walkway(HDU4258,dp斜率优化)
    HDU3507 Print Article
    POJ1821 Fence
  • 原文地址:https://www.cnblogs.com/WizardCowboy/p/7629032.html
Copyright © 2011-2022 走看看