zoukankan      html  css  js  c++  java
  • [BZOJ3173]最长上升子序列

    Problem

    给你n个数A1~An,每次将i插入第Ai位后,最后输出每次插入后这个数列的最长上升子序列

    Solution

    这道题非常的妙。首先如果新加入的这个数构成了最长上升子序列,由于在它插入之前都是比它小的数,所以就是最后这个序列这个位置的最长上升子序列。
    如果不是最长的,只需要和前面那个数插入构成的最长上升子序列长度取max。
    构造最后的序列长度可以用Treap维护。

    Notice

    插入点时,不用记录是第几个数,因为Treap新建节点的顺序就是插入的顺序。

    Code

    非旋转Treap

    #include<cmath>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define sqz main
    #define ll long long
    #define reg register int
    #define rep(i, a, b) for (reg i = a; i <= b; i++)
    #define per(i, a, b) for (reg i = a; i >= b; i--)
    #define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
    const int INF = 1e9, N = 100000;
    const double eps = 1e-6, phi = acos(-1.0);
    ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
    ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
    void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
    int point = 0, root, f[N + 5], g[N + 5], T[N + 5], now = 0;
    struct node
    {
    	int Val[N + 5], Level[N + 5], Size[N + 5], Son[2][N + 5];
    	inline void up(int u)
        {
            Size[u] = Size[Son[0][u]] + Size[Son[1][u]] + 1;
        }
        int Newnode(int v)
        {
            int u = ++point;
            Val[u] = v, Level[u] = rand();
            Son[0][u] = Son[1][u] = 0, Size[u] = 1;
            return u;
        }
        int Merge(int X, int Y)
        {
            if (X * Y == 0) return X + Y;
            if (Level[X] < Level[Y])
            {
                Son[1][X] = Merge(Son[1][X], Y);
                up(X); return X;
            }
            else
            {
                Son[0][Y] = Merge(X, Son[0][Y]);
                up(Y); return Y;
            }
        }
        void Split(int u, int t, int &x, int &y)
        {
            if (!u)
    		{
    			x = y = 0;
    			return;
    		}
            if (Size[Son[0][u]] < t) x = u, Split(Son[1][u], t - Size[Son[0][u]] - 1, Son[1][u], y);
            else y = u, Split(Son[0][u], t, x, Son[0][u]);
            up(u);
        }
        void Build(int l, int r)
        {
            int last, u, s[N + 5], top = 0;
            rep(i, l, r)
            {
                int u = Newnode(T[i]);
                last = 0;
                while (top && Level[s[top]] > Level[u])
                {
                    up(s[top]);
                    last = s[top];
                    s[top--] = 0;
                }
                if (top) Son[1][s[top]] = u;
                Son[0][u] = last;
                s[++top] = u;
            }
            while (top) up(s[top--]);
            root = s[1];
        }
        int Find_rank(int v)
        {
            int x, y, t;
        	Split(root, v - 1, x, y);
        	t = Size[x];
        	root = Merge(x, y);
        	return t + 1;
        }
        int Find_num(int u, int v)
        {
            if (!u) return 0;
            if (v <= Size[Son[0][u]]) return Find_num(Son[0][u], v);
            else if (v <= Size[Son[0][u]] + 1) return u;
            else return Find_num(Son[1][u], v - Size[Son[0][u]] - 1);
        }
        void Insert(int v)
        {
        	int t = Newnode(v), x, y;
            Split(root, v, x, y);
        	root = Merge(Merge(x, t), y);
        }
    	void Out(int u)
    	{
    	    if (!u) return;
    	    Out(Son[0][u]);
    	    T[++now] = u;
    	    Out(Son[1][u]);
    	}
    }Treap;
    
    int sqz()
    {
        int n = read();
        rep(i, 1, n)
        {
            int x = read();
            Treap.Insert(x);
        }
        Treap.Out(root);
        g[0] = -1, f[0] = 1;
        int len = 0;
        rep(i, 1, n)
        {
            int t = lower_bound(g, g + len + 1, T[i]) - g;
            f[T[i]] = t;
            if (t == len + 1) g[++len] = T[i];
            else g[t] = T[i];
        }
        rep(i, 1, n)
        {
            f[i] = max(f[i - 1], f[i]);
            printf("%d
    ", f[i]);
        }
        return 0;
    }
    

    旋转Treap

    #include<cmath>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define sqz main
    #define ll long long
    #define reg register int
    #define rep(i, a, b) for (reg i = a; i <= b; i++)
    #define per(i, a, b) for (reg i = a; i >= b; i--)
    #define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
    const int INF = 1e9, N = 100000;
    const double eps = 1e-6, phi = acos(-1.0);
    ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
    ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
    void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
    int point = 0, root, f[N + 5], g[N + 5], T[N + 5], now = 0;
    struct node
    {
    	int Val[N + 5], Level[N + 5], Size[N + 5], Son[2][N + 5];
    	inline void up(int u)
    	{
    		Size[u] = Size[Son[0][u]] + Size[Son[1][u]] + 1;
    	}
    	inline void Newnode(int &u, int v)
    	{
    		u = ++point;
    		Level[u] = rand(), Val[u] = v;
    		Size[u] = 1, Son[0][u] = Son[1][u] = 0;
    	}
    	inline void Lturn(int &x)
    	{
    		int y = Son[1][x]; Son[1][x] = Son[0][y], Son[0][y] = x;
    		Size[y] = Size[x]; up(x); x = y;
    	}
    	inline void Rturn(int &x)
    	{
    		int y = Son[0][x]; Son[0][x] = Son[1][y], Son[1][y] = x;
    		Size[y] = Size[x]; up(x); x = y;
    	}
    
    	void Insert(int &u, int t)
    	{
    		if (u == 0)
    		{
    			Newnode(u, t);
    			return;
    		}
    		Size[u]++;
    		if (Size[Son[0][u]] >= t)
    		{
    			Insert(Son[0][u], t);
    			if (Level[Son[0][u]] < Level[u]) Rturn(u);
    		}
    		else
    		{
    			Insert(Son[1][u], t - Size[Son[0][u]] - 1);
    			if (Level[Son[1][u]] < Level[u]) Lturn(u);
    		}
    	}
    	int Find_num(int u, int t)
    	{
    		if (!u) return 0;
    		if (t <= Size[Son[0][u]]) return Find_num(Son[0][u], t);
    		else if (t <= Size[Son[0][u]] + 1) return Val[u];
    		else return Find_num(Son[1][u], t - Size[Son[0][u]] - 1);
    	}
    	void Out(int u)
    	{
    	    if (!u) return;
    	    Out(Son[0][u]);
    	    T[++now] = u;
    	    Out(Son[1][u]);
    	}
    }Treap;
    
    int sqz()
    {
        int n = read();
        rep(i, 1, n)
        {
            int x = read();
            Treap.Insert(root, x);
        }
        Treap.Out(root);
        g[0] = -1, f[0] = 1;
        int len = 0;
        rep(i, 1, n)
        {
            int t = lower_bound(g, g + len + 1, T[i]) - g;
            f[T[i]] = t;
            if (t == len + 1) g[++len] = T[i];
            else g[t] = T[i];
        }
        rep(i, 1, n)
        {
            f[i] = max(f[i - 1], f[i]);
            printf("%d
    ", f[i]);
        }
        return 0;
    }
    
  • 相关阅读:
    NOIP模拟题 管道
    NOIP模拟题 序列
    NOIP模拟题 栅栏
    NOIP模拟题 斐波那契数列
    CodeForces 797F Mice and Holes
    CodeForces 589H Tourist Guide
    CERC2016 爵士之旅 Jazz Journey
    BZOJ3832 Rally
    BZOJ1061 NOI2008 志愿者招募
    js数组的操作
  • 原文地址:https://www.cnblogs.com/WizardCowboy/p/7643634.html
Copyright © 2011-2022 走看看