zoukankan      html  css  js  c++  java
  • [Codeforces613E]Puzzle Lover

    Problem

    给你2*n的格子,每个格子有一个字母,从任意一点出发,不重复的经过上下左右,生成要求的字符串。问有几种不同的走法。

    Solution


    分三段,左U型、中间、右U型。
    分别枚举左边和右边的长度,中间一段用Dp来解决。
    Dp[i][j][k],i,j,k表示当前在(i,j)位置,枚举到第k个字符。

    Notice

    特殊情况下有重复。

    Code

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define sqz main
    #define ll long long
    #define reg register int
    #define rep(i, a, b) for (reg i = a; i <= b; i++)
    #define per(i, a, b) for (reg i = a; i >= b; i--)
    #define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
    const int INF = 1e9, mod = 1e9 + 7, Ha = 826036489, N = 2000;
    const double eps = 1e-6, phi = acos(-1.0);
    ll modd(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
    ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
    void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
    char S[2][N + 5], st[N + 5];
    ll f[2][N + 5][N + 5], mi[N + 5];
    int n, m;
    void Calc(ll &X, ll Y)
    {
    	X += Y;
    	if (X >= mod) X -= mod;
    }
    struct Hash
    {
    	ll hash[N + 5];
    	void Make(int n, char *s)
    	{
    		hash[0] = 0;
    		rep(i, 1, n) hash[i] = (hash[i - 1] * 31 + s[i] - 'a') % Ha;
    	}
    	ll Cut(int l, int r)
    	{
    		return (hash[r] - hash[l - 1] * mi[r - l + 1] % Ha + Ha) % Ha;
    	}
    }pre[2], suf[2], Comp;
    ll Solve(int flag)
    {
    	ll T = 0;
    	memset(f, 0, sizeof(f));
    	rep(j, 1, n)
    	{
    		f[0][j][0] = f[1][j][0] = 1;
    		rep(i, 0, 1)
    		{
    			rep(k, 2, min(n - j + 1, m / 2))
    				if (Comp.Cut(m - 2 * k + 1, m - k) == pre[i].Cut(j, j + k - 1) && Comp.Cut(m - k + 1, m) == suf[1 - i].Cut(n - (j + k - 1) + 1, n - j + 1))
    					if (2 * k != m || flag) Calc(T, f[i][j][m - 2 * k]);
    			rep(k, 2, min(j, m / 2))
    				if (Comp.Cut(k + 1, 2 * k) == pre[i].Cut(j - k + 1, j) && Comp.Cut(1, k) == suf[1 - i].Cut(n - j + 1, n - (j - k + 1) + 1))
    					if (2 * k != m || flag) Calc(f[i][j + 1][2 * k], 1);
    		}
    		rep(i, 0, 1)
    			rep(k, 0, m - 1)
    				if (S[i][j] == st[k + 1])
    				{
    					Calc(f[i][j + 1][k + 1], f[i][j][k]);
    					if (k + 2 <= m && S[1 - i][j] == st[k + 2])
    						Calc(f[1 - i][j + 1][k + 2], f[i][j][k]);
    				}
    		rep(i, 0, 1) Calc(T, f[i][j + 1][m]);
    	}
    	return T;
    }
    
    int sqz()
    {
    	scanf("%s%s%s", S[0] + 1, S[1] + 1, st + 1);
    	n = strlen(S[0] + 1), m = strlen(st + 1);
    	mi[0] = 1;
    	rep(i, 1, 2000) mi[i] = (mi[i - 1] * 31) % Ha;
    	rep(i, 0, 1)
    	{
    		pre[i].Make(n, S[i]);
    		reverse(S[i] + 1, S[i] + n + 1);
    		suf[i].Make(n, S[i]);
    		reverse(S[i] + 1, S[i] + n + 1);
    	}
    	Comp.Make(m, st);
    	if (m == 1)
    	{
    		printf("%I64d
    ", Solve(1) % mod);
    		return 0;
    	}
    	ll ans = 0;
    	Calc(ans, Solve(1));
    	reverse(st + 1, st + m + 1);
    	Comp.Make(m, st);
    	Calc(ans, Solve(0));
    	if (m == 2)
    		rep(i, 1, n)
    		{
    			if (S[0][i] == st[1] && S[1][i] == st[2]) Calc(ans, mod - 1);
    			if (S[1][i] == st[1] && S[0][i] == st[2]) Calc(ans, mod - 1);
    		}
    	printf("%I64d
    ", ans);
    	return 0;
    }
    
  • 相关阅读:
    《React+Redux前端开发实战》笔记2:基于Webpack构建的Hello World案例(上)
    Micro:bit 03:剪刀石头布进阶版
    c++05:二维数组
    c++04:数组的应用:点灯问题
    c++03:质合判断
    Micro:bit第二集——温控与风扇
    c++之二:利用一维数组求最大,最小,平均值
    c++首发:软件安装&helloworld
    scratch第十二集——星图
    scratch第十一集——黄金矿工
  • 原文地址:https://www.cnblogs.com/WizardCowboy/p/7735547.html
Copyright © 2011-2022 走看看