zoukankan      html  css  js  c++  java
  • [洛谷4948]数列求和

    题目传送门:https://www.luogu.org/problemnew/show/P4948

    题目大意:令(A_n=n^k imes q^n),求(sumlimits_{i=1}^nA_i)


    其实很久以前数学课学了数列就开始想这题了……

    但最近才会解法……

    我们令(S_k(n)=sumlimits_{i=1}^ni^k imes q^i),对其扰动可得

    [egin{align}S_k(n)&=sumlimits_{i=1}^n(i+1)^k imes q^{i+1}-(n+1)^k imes q^{n+1}+q onumber\&=sumlimits_{i=1}^nsumlimits_{j=0}^kinom{k}{j}i^j imes q^{i+1}-(n+1)^k imes q^{n+1}+q onumber\&=qsumlimits_{j=0}^kinom{k}{j}S_j(n)-(n+1)^k imes q^{n+1}+q onumberend{align} ]

    所以我们就得到了(S_k(n))的递推式

    [S_k(n)=dfrac{(n+1)^k imes q^{n+1}-sumlimits_{j=0}^{k-1}inom{k}{j}S_j(n)-q}{q-1} ]

    但是这仅限于(q>1)的情况,那么(q=1)的情况呢,那就是幂和的形式,具体方法可以看这篇博客

    /*program from Wolfycz*/
    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define inf 0x7f7f7f7f
    using namespace std;
    typedef long long ll;
    typedef unsigned int ui;
    typedef unsigned long long ull;
    inline char gc(){
    	static char buf[1000000],*p1=buf,*p2=buf;
    	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
    }
    template<typename T>inline T frd(T x){
    	int f=1; char ch=gc();
    	for (;ch<'0'||ch>'9';ch=gc())	if (ch=='-')	f=-1;
    	for (;ch>='0'&&ch<='9';ch=gc())	x=(x<<3)+(x<<1)+ch-'0';
    	return x*f;
    }
    template<typename T>inline T read(T x){
    	int f=1; char ch=getchar();
    	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')	f=-1;
    	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<3)+(x<<1)+ch-'0';
    	return x*f;
    }
    inline void print(int x){
    	if (x<0)	putchar('-'),x=-x;
    	if (x>9)	print(x/10);
    	putchar(x%10+'0');
    }
    const int N=2e3,p=1e9+7;
    int fac[N+10],inv[N+10],T[N+10];
    void prepare(){
    	fac[0]=inv[0]=inv[1]=1;
    	for (int i=1;i<=N;i++)	fac[i]=1ll*i*fac[i-1]%p;
    	for (int i=2;i<=N;i++)	inv[i]=1ll*(p-p/i)*inv[p%i]%p;
    	for (int i=1;i<=N;i++)	inv[i]=1ll*inv[i-1]*inv[i]%p;
    }
    int C(int n,int m){return 1ll*fac[n]*inv[m]%p*inv[n-m]%p;}
    int mlt(ll a,ll b){
    	int res=1; a%=p; b%=(p-1);
    	for (;b;b>>=1,a=1ll*a*a%p)	if (b&1)	res=1ll*res*a%p;
    	return res;
    }
    int main(){
    	prepare();
    	ll n=read(0ll); int a=read(0),k=read(0);
    	if (a==1){
    		T[0]=n%p;
    		for (int i=1;i<=k;i++){
    			int res=0;
    			for (int j=0;j<i;j++)	res=(1ll*C(i+1,j)*T[j]+res)%p;
    			T[i]=1ll*(mlt(n+1,i+1)-res-1)*mlt(i+1,p-2)%p;
    		}
    		printf("%d
    ",(T[k]+p)%p);
    	}else{
    		T[0]=1ll*(a-mlt(a,n+1))*mlt(1-a,p-2)%p;
    		for (int i=1;i<=k;i++){
    			int res=0;
    			for (int j=0;j<i;j++)	res=(1ll*C(i,j)*T[j]+res)%p;
    			res=1ll*res*a%p;
    			T[i]=1ll*(1ll*mlt(n+1,i)*mlt(a,n+1)-a-res)%p*mlt(a-1,p-2)%p;
    		}
    		printf("%d
    ",(T[k]+p)%p);
    	}
    	return 0;
    }
    
  • 相关阅读:
    ACM Dance Recital(dfs+剪枝)
    矩阵快速幂
    分页实现复选框的选中状态
    MemCached 和redis的区别
    调用存储过程传值
    实现js中的时间格式中的T
    实现下载完成
    模态框实现功能后刷新父类页面
    JSON.parse()、JSON.stringify()和eval()的作用
    全选反选珍藏班版
  • 原文地址:https://www.cnblogs.com/Wolfycz/p/10622450.html
Copyright © 2011-2022 走看看