zoukankan      html  css  js  c++  java
  • [HDU5391]Zball in Tina Town

    Description
    Tina Town is a friendly place. People there care about each other.

    Tina has a ball called zball. Zball is magic. It grows larger every day. On the first day, it becomes 1 time as large as its original size. On the second day,it will become 2 times as large as the size on the first day. On the n-th day,it will become nn times as large as the size on the (n-1)-th day. Tina want to know its size on the (n-1)-th day modulo n.

    Input
    The first line of input contains an integer (T), representing the number of cases.
    The following (T) lines, each line contains an integer (n), according to the description.
    ((Tleqslant 10^5,2leqslant nleqslant 10^9))

    Output
    For each test case, output an integer representing the answer.

    Sample Input

    2
    3
    10
    

    Sample Output

    2
    0
    

    题目大意:求((n-1)!\%n)

    根据打表+找规律+大胆猜想可得,当(n)为质数时,答案为(n-1),否则答案为(0)(当(n=4)时,答案为2,是特殊情况)

    下面我们给出其证明:

    • (n=4),直接模拟即可

    • (n)为合数,但不为完全平方数,则此时令(n=a imes b,a eq b),故必然有(a,b<n-1),则((n-1)!\%n=0)

    • (n)为完全平方数(4除外),则令(n=a^2),因为(a>2),故(2a<n-1),则((n-1)!\%n=0)

    • (n)为质数,则可套用威尔逊定理:当且仅当(p)为质数时,((p-1)!equiv -1mod p)

      下面给出威尔逊定理的证明:

      易得(1 imes 1equiv1mod p,(-1) imes(-1)equiv1mod p),且在小于(p)的所有数中,仅有这两组逆元与本身相等(-1即为p-1)

      除此之外,(2...p-2)中所有数都有一个对应的逆元,且逆元与本身不相同,而且这个逆元关系是一一对应的

      (a imes a^{-1}equiv1),则有(a^{-1} imes aequiv1),故((a^{-1})^{-1}=a),说明逆元的关系是可逆的,即逆元是成对出现的

      如果(p=2),结论显然成立;如果(p>2),那么(p)必然为奇数,故(2...p-2)的个数是偶数,即所有数都两两配对互为逆元,那么它们的乘积(\%p)后都为1,最后再乘上1和-1,故最终的结果为-1,得证

    /*program from Wolfycz*/
    #include<map>
    #include<cmath>
    #include<cstdio>
    #include<vector>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define Fi first
    #define Se second
    #define ll_inf 1e18
    #define MK make_pair
    #define sqr(x) ((x)*(x))
    #define pii pair<int,int>
    #define int_inf 0x7f7f7f7f
    using namespace std;
    typedef long long ll;
    typedef unsigned int ui;
    typedef unsigned long long ull;
    inline char gc(){
    	static char buf[1000000],*p1=buf,*p2=buf;
    	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
    }
    template<typename T>inline T frd(T x){
    	int f=1; char ch=gc();
    	for (;ch<'0'||ch>'9';ch=gc())	if (ch=='-')    f=-1;
    	for (;ch>='0'&&ch<='9';ch=gc())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    template<typename T>inline T read(T x){
    	int f=1; char ch=getchar();
    	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')	f=-1;
    	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    inline void print(int x){
    	if (x<0)	putchar('-'),x=-x;
    	if (x>9)	print(x/10);
    	putchar(x%10+'0');
    }
    bool Check(int x){
    	int n=sqrt(x);
    	for (int i=2;i<=n;i++)
    		if (x%i==0)
    			return 0;
    	return 1;
    }
    int main(){
    //	freopen(".in","r",stdin);
    //	freopen(".out","w",stdout);
    	int T=read(0);
    	while (T--){
    		int n=read(0);
    		if (n==4){
    			printf("%d
    ",2);
    			continue;
    		}
    		printf("%d
    ",Check(n)?n-1:0);
    	}
    	return 0;
    }
    
    作者:Wolfycz
    本文版权归作者和博客园共有,欢迎转载,但必须在文章开头注明原文出处,否则保留追究法律责任的权利
  • 相关阅读:
    Input 银行卡验证
    记一次坑爹的加解密问题
    C# Html Agility Pack
    记一次坑爹的 “跨域” 问题
    FindControl的使用方法
    C#如何使用异步编程
    ReportViewer中设置ServerReport.ReportServerCredentials属性的方法
    C#中常用接口介绍
    谈谈C#中的接口
    DataTable与Linq相互转换
  • 原文地址:https://www.cnblogs.com/Wolfycz/p/14932418.html
Copyright © 2011-2022 走看看