zoukankan      html  css  js  c++  java
  • [PYTHON-TSNE]可视化Word Vector

    需要的几个文件:

    1.wordList.txt,即你要转化成vector的word list:

    spring
    maven
    junit
    ant
    swing
    xml
    jre
    jdk
    jbutton
    jpanel
    swt
    japplet
    jdialog
    jcheckbox
    jlabel
    jmenu
    slf4j
    test
    unit

    2.label.txt, 即图中显示的label,可以与wordlist.txt中的word不同。

    spring
    maven
    junit
    ant
    swing
    xml
    jre
    jdk
    jbutton
    jpanel
    swt
    japplet
    jdialog
    jcheckbox
    jlabel
    jmenu
    slf4j
    test
    unit

    3.model,用gensim生成的word2vec model;

    4.运行buildWordVectorFromW2V.py,用于生成wordvectorlist:

    from gensim.models.word2vec import Word2Vec
    from pathutil import get_base_path
    
    modelpath = 'XXX/model'
    
    model = Word2Vec.load(modelpath)
    sentenceFilePath = 'wordList.txt'
    vectorFilePath = 'word2vec.txt'
    
    sentence = []
    writeStr = ''
    with open(sentenceFilePath, 'r') as f:
        for line in f:
            sentWordList = line.strip().split(' ')
            for word in sentWordList:
                if word not in model:
                    print 'error!'
                vec = model[word]
                for vecTmp in vec:
                    writeStr += (str(vecTmp) + ' ')
            writeStr += '
    '
    
    f = open(vectorFilePath, "w")
    f.write(writeStr.strip())

    5.运行visualization.py,用于生成图片:

    import numpy as np
    from gensim.models.word2vec import Word2Vec
    import matplotlib.pyplot as plt
    from pathutil import get_base_path
    
    modelpath = 'XXX/model'
    model = Word2Vec.load(modelpath)
    sentenceFilePath = 'wordlist.txt'
    labelFilePath = 'wordlist.txt'
    
    visualizeVecs = []
    with open(sentenceFilePath, 'r') as f:
        for line in f:
            word = line.strip()
            vec = model[word.lower()]
            visualizeVecs.append(vec)
    
    visualizeWords = []
    with open(labelFilePath, 'r') as f:
        for line in f:
            word = line.strip()
            visualizeWords.append(word.lower())
    
    visualizeVecs = np.array(visualizeVecs).astype(np.float64)
    # Y = tsne(visualizeVecs, 2, 200, 20.0);
    # # Plot.scatter(Y[:,0], Y[:,1], 20,labels);
    # # ChineseFont1 = FontProperties('SimHei')
    # for i in xrange(len(visualizeWords)):
    #     # if i<len(visualizeWords)/2:
    #     #     color='green'
    #     # else:
    #     #     color='red'
    #     color = 'red'
    #     plt.text(Y[i, 0], Y[i, 1], visualizeWords[i],bbox=dict(facecolor=color, alpha=0.1))
    # plt.xlim((np.min(Y[:, 0]), np.max(Y[:, 0])))
    # plt.ylim((np.min(Y[:, 1]), np.max(Y[:, 1])))
    # plt.show()
    
    
    # vis_norm = np.sqrt(np.sum(temp**2, axis=1, keepdims=True))
    # temp = temp / vis_norm
    temp = (visualizeVecs - np.mean(visualizeVecs, axis=0))
    covariance = 1.0 / visualizeVecs.shape[0] * temp.T.dot(temp)
    U, S, V = np.linalg.svd(covariance)
    coord = temp.dot(U[:, 0:2])
    for i in xrange(len(visualizeWords)):
        print i
        print coord[i, 0]
        print coord[i, 1]
        color = 'red'
        plt.text(coord[i, 0], coord[i, 1], visualizeWords[i], bbox=dict(facecolor=color, alpha=0.1),
                 fontsize=22)  # fontproperties = ChineseFont1
    plt.xlim((np.min(coord[:, 0]), np.max(coord[:, 0])))
    plt.ylim((np.min(coord[:, 1]), np.max(coord[:, 1])))
    plt.show()
    

      

    运行结果:

  • 相关阅读:
    ES6 export
    vue-cli3实现分环境打包步骤(给不同的环境配置相对应的打包命令)
    vue.config.js
    npm install 错误 安装 chromedriver 失败的解决办法
    解决JS(Vue)input[type='file'] change事件无法上传相同文件的问题
    CSS设置浏览器滚动条样式
    ELK 性能(3) — 在 Docker 上运行高性能容错的 Elasticsearch 集群
    ELK 性能(2) — 如何在大业务量下保持 Elasticsearch 集群的稳定
    ELK 性能(1) — Logstash 性能及其替代方案
    ElasticSearch 2 (37)
  • 原文地址:https://www.cnblogs.com/XBWer/p/6961960.html
Copyright © 2011-2022 走看看