zoukankan      html  css  js  c++  java
  • [PYTHON-TSNE]可视化Word Vector

    需要的几个文件:

    1.wordList.txt,即你要转化成vector的word list:

    spring
    maven
    junit
    ant
    swing
    xml
    jre
    jdk
    jbutton
    jpanel
    swt
    japplet
    jdialog
    jcheckbox
    jlabel
    jmenu
    slf4j
    test
    unit

    2.label.txt, 即图中显示的label,可以与wordlist.txt中的word不同。

    spring
    maven
    junit
    ant
    swing
    xml
    jre
    jdk
    jbutton
    jpanel
    swt
    japplet
    jdialog
    jcheckbox
    jlabel
    jmenu
    slf4j
    test
    unit

    3.model,用gensim生成的word2vec model;

    4.运行buildWordVectorFromW2V.py,用于生成wordvectorlist:

    from gensim.models.word2vec import Word2Vec
    from pathutil import get_base_path
    
    modelpath = 'XXX/model'
    
    model = Word2Vec.load(modelpath)
    sentenceFilePath = 'wordList.txt'
    vectorFilePath = 'word2vec.txt'
    
    sentence = []
    writeStr = ''
    with open(sentenceFilePath, 'r') as f:
        for line in f:
            sentWordList = line.strip().split(' ')
            for word in sentWordList:
                if word not in model:
                    print 'error!'
                vec = model[word]
                for vecTmp in vec:
                    writeStr += (str(vecTmp) + ' ')
            writeStr += '
    '
    
    f = open(vectorFilePath, "w")
    f.write(writeStr.strip())

    5.运行visualization.py,用于生成图片:

    import numpy as np
    from gensim.models.word2vec import Word2Vec
    import matplotlib.pyplot as plt
    from pathutil import get_base_path
    
    modelpath = 'XXX/model'
    model = Word2Vec.load(modelpath)
    sentenceFilePath = 'wordlist.txt'
    labelFilePath = 'wordlist.txt'
    
    visualizeVecs = []
    with open(sentenceFilePath, 'r') as f:
        for line in f:
            word = line.strip()
            vec = model[word.lower()]
            visualizeVecs.append(vec)
    
    visualizeWords = []
    with open(labelFilePath, 'r') as f:
        for line in f:
            word = line.strip()
            visualizeWords.append(word.lower())
    
    visualizeVecs = np.array(visualizeVecs).astype(np.float64)
    # Y = tsne(visualizeVecs, 2, 200, 20.0);
    # # Plot.scatter(Y[:,0], Y[:,1], 20,labels);
    # # ChineseFont1 = FontProperties('SimHei')
    # for i in xrange(len(visualizeWords)):
    #     # if i<len(visualizeWords)/2:
    #     #     color='green'
    #     # else:
    #     #     color='red'
    #     color = 'red'
    #     plt.text(Y[i, 0], Y[i, 1], visualizeWords[i],bbox=dict(facecolor=color, alpha=0.1))
    # plt.xlim((np.min(Y[:, 0]), np.max(Y[:, 0])))
    # plt.ylim((np.min(Y[:, 1]), np.max(Y[:, 1])))
    # plt.show()
    
    
    # vis_norm = np.sqrt(np.sum(temp**2, axis=1, keepdims=True))
    # temp = temp / vis_norm
    temp = (visualizeVecs - np.mean(visualizeVecs, axis=0))
    covariance = 1.0 / visualizeVecs.shape[0] * temp.T.dot(temp)
    U, S, V = np.linalg.svd(covariance)
    coord = temp.dot(U[:, 0:2])
    for i in xrange(len(visualizeWords)):
        print i
        print coord[i, 0]
        print coord[i, 1]
        color = 'red'
        plt.text(coord[i, 0], coord[i, 1], visualizeWords[i], bbox=dict(facecolor=color, alpha=0.1),
                 fontsize=22)  # fontproperties = ChineseFont1
    plt.xlim((np.min(coord[:, 0]), np.max(coord[:, 0])))
    plt.ylim((np.min(coord[:, 1]), np.max(coord[:, 1])))
    plt.show()
    

      

    运行结果:

  • 相关阅读:
    Linux的上的MongoDB的安装与卸载
    MongoDB常用操作
    scrapy 爬网站 显示 Filtered offsite request to 错误.
    在linux系统下把多个终端合并在一个窗口
    安装python爬虫scrapy踩过的那些坑和编程外的思考
    大规模爬虫流程总结
    Python的35种“黑魔法”级别技巧!
    2019/2/13 Python今日收获
    2019/2/12 Python今日收获
    2019/1/22 Python今日收获
  • 原文地址:https://www.cnblogs.com/XBWer/p/6961960.html
Copyright © 2011-2022 走看看