zoukankan      html  css  js  c++  java
  • HDU多校 1、2

    G1

    D

    可以看出,到了>3的情况,只要abcabc循环下去就行。

    #include <bits/stdc++.h>
    #define debug freopen("r.txt","r",stdin)
    #define mp make_pair
    #define ri register int
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    const int maxn = 5e4+10;
    const int INF = 0x3f3f3f3f; 
    const int mod = 998244353;
    inline ll read(){ll s=0,w=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
    return s*w;}
    ll qpow(ll p,ll q){return (q&1?p:1)*(q?qpow(p*p%mod,q/2):1)%mod;}
    int t,n;
    int main()
    {
        t=read();
        while (t--)
        {
            n=read();
            if (n==1) cout<<26<<endl;
            else if (n==2) cout<<676<<endl;
            else if (n==3) cout<<676*26<<endl;
            else cout<<26*25*24%mod<<endl;;
        }
        return 0;
    }
    View Code

    I

    这题本意跟栈的处理基本上是相同了,栈模拟即可。

    #include <bits/stdc++.h>
    #define debug freopen("r.txt","r",stdin)
    #define mp make_pair
    #define ri register int
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    const int maxn = 5e4+10;
    const int INF = 0x3f3f3f3f; 
    const int mod = 998244353;
    inline ll read(){ll s=0,w=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
    return s*w;}
    ll qpow(ll p,ll q){return (q&1?p:1)*(q?qpow(p*p%mod,q/2):1)%mod;}
    struct node
    {
        ll p,a;    
    };
    ll T,i,n,ans,num;
    node b[maxn],s[maxn];
    bool cmp(node x,node y)
    {
        if (x.a==y.a) return x.p<y.p;
        return x.a<y.a;
    }
    bool check(node x,node y,node z)
    {
        return (y.p-z.p)*(y.a-x.a)-(z.a-y.a)*(x.p-y.p)<=0;
    }
    int main()
    {
        T=read();
        while (T--)
        {
            n=read();
            map<pii , ll> mapp;
            for (i=1;i<=n;i++) 
            {
                b[i].p=read(),b[i].a=read();
                mapp[mp(b[i].p,b[i].a)]++;
            }
            sort(b+1,b+1+n,cmp);
            num=0;
            for (i=1;i<=n;i++)
            {
                while ((num>0 && (b[i].p>=s[num].p)) ||(num>1 && check(s[num-1],s[num],b[i])))
                {
                    num--;
                }
                s[++num]=b[i];
            }
            ans=num;
            for (i=1;i<=num;i++)
            {
                if (mapp[mp(s[i].p,s[i].a)]>1) ans--;
            }
            cout<<ans<<endl;
        }
        return 0;
    }
    //18
    //24163 1
    //24068 190
    //23783 380
    //23308 570
    //22643 760
    //21788 950
    //20743 1140
    //19508 1330
    //18083 1520
    //16468 1710
    //14663 1900
    //12668 2090
    //10483 2280
    //8108 2470
    //5543 2660
    //2788 2850
    //24168 27
    //24172 26
    View Code

    G2

    A

    题意就是把连通块进行不断拆分删边,根本没意识到这就是并查集的逆过程……

    逆向思维很重要

    #include <bits/stdc++.h>
    #define debug freopen("r.txt","r",stdin)
    #define mp make_pair
    #define ri register int
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    const int maxn = 1e5+7;
    const int INF = 0x3f3f3f3f; 
    const int mod = 1e9+7;
    inline ll read(){ll s=0,w=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
    return s*w;}
    ll qpow(ll p,ll q){return (q&1?p:1)*(q?qpow(p*p%mod,q/2):1)%mod;}
    struct node
    {
        ll value,num;    
    };
    vector <ll> G[maxn];
    node a[maxn];
    ll father[maxn],u,v,i,n,m,t,vis[maxn];
    ll sum,block;
    bool cmp(node x,node y)
    {
        return x.value>y.value;
    }
    ll fa(ll x)
    {    
        return father[x]==x?x:father[x]=fa(father[x]);
    }
    ll join(ll x, ll y)
    {
        x=fa(x),y=fa(y);
        if (x!=y) father[x]=y;
    }
    int main()
    {
        t=read();
        while (t--)
        {
            n=read(),m=read();
            for (i=1;i<=n;i++) father[i]=i,a[i].num=i,a[i].value=read();
            sort(a+1,a+1+n,cmp);
            a[n+1].value=0;
            for (i=1;i<=m;i++) 
            {
                u=read(),v=read();
                G[u].push_back(v);
                G[v].push_back(u);
            }
            for (i=1;i<=n;i++) vis[i]=false;
            sum=block=0;
            for (i=1;i<=n;i++)
            {
                u=a[i].num;
                vis[u]=true;
                block++;
                for (auto v:G[u])
                {
                    if (!vis[v]) continue;
                    if (fa(v)!=fa(u)) 
                        join(u,v),block--;
                }
                sum+=block*(a[i].value-a[i+1].value);
            }
            for (i=1;i<=n;i++) G[i].clear();
            cout<<sum<<endl;
        }
        return 0;
    }
    View Code

    J

    数据很小,暴搜即可。

    #include <bits/stdc++.h>
    #define debug freopen("r.txt","r",stdin)
    #define mp make_pair
    #define ri register int
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    const int maxn = 55;
    const int INF = 0x3f3f3f3f; 
    const int mod = 1e9+7;
    inline ll read(){ll s=0,w=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
    return s*w;}
    ll qpow(ll p,ll q){return (q&1?p:1)*(q?qpow(p*p%mod,q/2):1)%mod;}
    struct node
    {
        ll a,b,c,d;
    };
    vector <node> G[maxn];
    int i,n,k,vis[maxn],t,x,a,b,c,d;
    ll cnt;
    ll dfs(ll num,ll a,ll b,ll c,ll d)
    {
        if (num==cnt+1)
        {
            return (100+a)*(100+b)*(100+c)*(100+d);
        }
        ll ans=0;
        for (ri i=0;i<G[num].size();i++)
        {
            node now=G[num][i];
            ans=max(ans,dfs(num+1,a+now.a,b+now.b,c+now.c,d+now.d));
        }
        return ans;
    }
    int main()
    {
        t=read();
        while (t--)
        {
            n=read(),k=read();
            cnt=0;
            for (i=1;i<=n;i++) 
            {
                x=read(),a=read(),b=read();
                c=read(),d=read();
                if (!vis[x])
                {
                    vis[x]=++cnt;
                }
                G[vis[x]].push_back({a,b,c,d});
            }
            printf("%lld
    ",dfs(1,0,0,0,0));
            for (i=1;i<=n;i++) G[i].clear(),vis[i]=0;
        }
        return 0;
    }
    View Code

    F

    将某一位从1变成0,其实就是从原数中减去那一位的斐波那契数。

    然后可以得出下面的式子,假设改变位的下标为k,则有:

    A * B = C + Fk

    容易得到ABC都是可以O(n)算出来的,最后的Fk暴力枚举也能求出来。

    #include <bits/stdc++.h>
    #define debug freopen("r.txt","r",stdin)
    #define mp make_pair
    #define ri register int
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    const int maxn = 2e6+7;
    const int INF = 0x3f3f3f3f; 
    const int mod = 1e9+7;
    inline ll read(){ll s=0,w=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
    return s*w;}
    ll qpow(ll p,ll q){return (q&1?p:1)*(q?qpow(p*p%mod,q/2):1)%mod;}
    ll f[maxn],i,t,x,n,sum1,sum2,sum3;
    int main()
    {
        f[1]=1,f[2]=2;
        for (i=3;i<=maxn;i++) f[i]=f[i-1]+f[i-2];
        t=read();
        while (t--)
        {
            n=read();
            sum1=sum2=sum3=0;
            for (i=1;i<=n;i++) 
            {
                x=read();
                if (x==1) sum1+=f[i];
            }
            n=read();
            for (i=1;i<=n;i++) 
            {
                x=read();
                if (x==1) sum2+=f[i];
            }
            n=read();
            for (i=1;i<=n;i++) 
            {
                x=read();
                if (x==1) sum3+=f[i];
            }
            for (i=1;i<=maxn;i++)
            {
                if (sum3==sum1*sum2-f[i])
                {
                    cout<<i<<endl;
                    break;
                }
            }
        }
        return 0;
    }
    View Code

    总结:有些题目很多人过,比如G1的Fibonacci Sum,但是补过很长时间真就是这没学,那不懂,况且我无法保证比赛时能否做的出来这种烧脑的题目,以至于这些数论题就此作罢。

  • 相关阅读:
    ()Python在数学建模中的简单应用
    ()Python3 列表,数组,矩阵的相互转换
    差商代微商的方法求解一阶常微分方程
    ()LaTex 论文排版(1): Win10 下 LaTex所需软件安装 (Tex live 2018 + Tex studio)
    渐进记法(O,Ω,Θ)
    定义类型别名(typedef,using)
    安装Java和Tomcat
    用PHP语言刷OJ题
    函数模板
    数组操作符
  • 原文地址:https://www.cnblogs.com/Y-Knightqin/p/13440195.html
Copyright © 2011-2022 走看看