zoukankan      html  css  js  c++  java
  • 一元函数积分学的概念与计算(二)

    反常积分

    • 定积分存在的两个必要条件,积分区间有限,被积函数有界
    • 破坏了积分区间的有限性,引出无穷区间上的反常积分
    • 破坏了被积函数的有界性,引出无界函数的反常积分

     

    无穷区间上反常积分的概念与敛散性

     在反常积分中,一般把∞和使得函数极限为无穷的点(瑕点)统称为奇点

    无界函数的反常积分的概念与敛散性

    b是f(x)的唯一瑕点,则无界函数f(x)的反常积分定义为

       若上述极限存在,称反常积分收敛,否则称为发散

    • 当x=b为f(x)的无穷间断点,这时f(x)便是一个无界函数了,但积分 可能存在
    • 定积分(黎曼积分)存在的必要条件是f(x)有界,但这里的积分是反常积分
    • 定积分存在(常义可积),反常积分存在(广义可积

    若a是f(x)的唯一瑕点,则物件函数f(x)的反常积分定义为

      若上述极限存在,称反常积分收敛,否则称为发散

    c∈(a, b)是f(x)的唯一瑕点,则无界函数f(x)的反常积分定义为

      ,若上述右边两个反常积分都收敛,则称反常积分收敛,否则称发散 

  • 相关阅读:
    poj 1456 贪心+STL
    hdu 4283 区间dp
    hdu 4745 区间dp
    hdu 3652 数位dp
    poj 2955 区间dp
    ubuntu apache2配置详解(含虚拟主机配置方法)
    从 mysql 客户端导出数据库 mysqldump
    Git 版本回退问题详解
    SEO 外链 内链 的定义
    为项目编写Readme.MD文件
  • 原文地址:https://www.cnblogs.com/YC-L/p/12172222.html
Copyright © 2011-2022 走看看