zoukankan      html  css  js  c++  java
  • HDU-4289-Control(最大流最小割,拆点)

    链接:

    https://vjudge.net/problem/HDU-4289

    题意:

    You, the head of Department of Security, recently received a top-secret information that a group of terrorists is planning to transport some WMD 1 from one city (the source) to another one (the destination). You know their date, source and destination, and they are using the highway network.
      The highway network consists of bidirectional highways, connecting two distinct city. A vehicle can only enter/exit the highway network at cities only.
      You may locate some SA (special agents) in some selected cities, so that when the terrorists enter a city under observation (that is, SA is in this city), they would be caught immediately.
      It is possible to locate SA in all cities, but since controlling a city with SA may cost your department a certain amount of money, which might vary from city to city, and your budget might not be able to bear the full cost of controlling all cities, you must identify a set of cities, that:
      * all traffic of the terrorists must pass at least one city of the set.
      * sum of cost of controlling all cities in the set is minimal.
      You may assume that it is always possible to get from source of the terrorists to their destination.

    1 Weapon of Mass Destruction

    思路:

    原题求最小的割点.让s不能到t现在将每个点拆成两个,一个入口一个出口,连一个有向边,每两个点之间连一个无向边.
    就变成里求最小割,根据最大流最小割,跑最大流即可.

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    //#include <memory.h>
    #include <queue>
    #include <set>
    #include <map>
    #include <algorithm>
    #include <math.h>
    #include <stack>
    #include <string>
    #define MINF 0x3f3f3f3f
    using namespace std;
    typedef long long LL;
    
    const int MAXN = 200+10;
    const int INF = 1e9;
    
    struct Edge
    {
        int from, to, cap;
    };
    vector<Edge> edges;
    vector<int> G[MAXN*4];
    int Dis[MAXN*4];
    int n, m, s, t;
    
    void AddEdge(int from, int to, int cap)
    {
        edges.push_back(Edge{from, to, cap});
        edges.push_back(Edge{to, from, 0});
        G[from].push_back(edges.size()-2);
        G[to].push_back(edges.size()-1);
    }
    
    bool Bfs()
    {
        memset(Dis, -1, sizeof(Dis));
        queue<int> que;
        que.push(s);
        Dis[s] = 0;
        while (!que.empty())
        {
            int u = que.front();
            que.pop();
    //        cout << u << endl;
            for (int i = 0;i < G[u].size();i++)
            {
                Edge &e = edges[G[u][i]];
                if (e.cap > 0 && Dis[e.to] == -1)
                {
                    Dis[e.to] = Dis[u]+1;
                    que.push(e.to);
                }
            }
        }
        return Dis[t] != -1;
    }
    
    int Dfs(int u, int flow)
    {
        if (u == t)
            return flow;
        int res = 0;
        for (int i = 0;i < G[u].size();i++)
        {
            Edge &e = edges[G[u][i]];
            if (e.cap > 0 && Dis[u]+1 == Dis[e.to])
            {
                int tmp = Dfs(e.to, min(flow, e.cap));
    //            cout << "flow:" << e.from << ' ' << e.to << ' ' << tmp << endl;
                e.cap -= tmp;
                flow -= tmp;
                edges[G[u][i]^1].cap += tmp;
                res += tmp;
                if (flow == 0)
                    break;
            }
        }
        if (res == 0)
            Dis[u] = -1;
        return res;
    }
    
    int MaxFlow()
    {
        int res = 0;
        while (Bfs())
        {
            res += Dfs(s, INF);
    //        cout << res << endl;
        }
        return res;
    }
    
    int main()
    {
        ios::sync_with_stdio(false);
        cin.tie(0);
        while (cin >> n >> m)
        {
            cin >> s >> t;
            for (int i = 0;i <= n*2;i++)
                G[i].clear();
            edges.clear();
            s = s*2-1;
            t = t*2;
            int w;
            for (int i = 1;i <= n;i++)
            {
                cin >> w;
                AddEdge(i*2-1, i*2, w);
            }
            int u, v;
            for (int i = 1;i <= m;i++)
            {
                cin >> u >> v;
                AddEdge(u*2, v*2-1, INF);
                AddEdge(v*2, u*2-1, INF);
            }
            LL res = MaxFlow();
            cout << res << endl;
        }
    
        return 0;
    }
    
  • 相关阅读:
    QT5 串口收发实例代码
    3D数学基础:四元数与欧拉角之间的转换
    3D数学基础:3D游戏动画中欧拉角与万向锁的理解
    WorldWind源码剖析系列:WorldWind如何确定与视点相关的地形数据的LOD层级与范围
    虚拟地球原理与实现
    开源(免费)三维 GIS(地形,游戏)
    [转]有关WorldWind1.4的worldwind.cs窗口设计器打开错误的解决方法
    [转]仿World Wind构造自己的C#版插件框架——WW插件机制精简改造
    [转]的C#实现三维数字地形漫游(基于Irrlicht)
    [转]开发Visual Studio风格的用户界面--MagicLibrary使用指南
  • 原文地址:https://www.cnblogs.com/YDDDD/p/11331155.html
Copyright © 2011-2022 走看看