链接:
https://www.acwing.com/problem/content/204/
题意:
8是中国的幸运数字,如果一个数字的每一位都由8构成则该数字被称作是幸运数字。
现在给定一个正整数L,请问至少多少个8连在一起组成的正整数(即最小幸运数字)是L的倍数。
思路:
求出式子8(10^x-1)/9为8组成的正整数.
另其为G, 有L|G, 两边同乘9,9L | 8(10^x-1),为了去掉右边的8, 令右边为变为原来的1/8, 左边变为原来的gcd(L, 8)倍.
令d = gcd(8, L), 9L/d 与 8/L互质, 因为9L/d | 8/d(10^x-1), 所以有9L/d | (10^x-1).
剩下就是同余, 10^x = 1 (mod 9L/d)假装是同余符号.
根据欧拉定理, x为fai(9*L/d) 的约数.枚举再暴力判断.
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL n;
LL Pow(LL a, LL b, LL mod)
{
LL res = 1;
while (b)
{
if (b&1)
res = (res*a)%mod;
a = (a*a)%mod;
b >>= 1;
}
return res;
}
LL Euler(LL x)
{
LL res = x;
for (int i = 2;i <= x;i++)
{
if (x%i == 0)
{
while (x % i == 0)
x /= i;
res = res/i*(i - 1);
}
}
if (x > 1)
res = res/x*(x-1);
return res;
}
LL Solve(int cnt, LL mod)
{
LL res = 1e18;
for (LL i = 1;i*i <= cnt;i++)
{
if (cnt%i == 0)
{
// cout << i << endl;
if (Pow(10, i, mod) == 1)
res = min(res, i);
if (Pow(10, cnt/i, mod) == 1)
res = min(res, cnt/i);
}
}
if (res == 1e18)
return 0;
return res;
}
int main()
{
int cnt = 0;
while (~scanf("%lld", &n) && n)
{
LL eul = Euler((9LL*n)/__gcd(8LL, n*9));
// cout << eul << endl;
LL res = Solve(eul, (9LL*n)/__gcd(8LL, n*9));
printf("Case %d: %lld
", ++cnt, res);
}
return 0;
}