zoukankan      html  css  js  c++  java
  • HDU-2825-Wireless Password(AC自动机, 状压DP)

    链接:

    https://vjudge.net/problem/HDU-2825

    题意:

    Liyuan lives in a old apartment. One day, he suddenly found that there was a wireless network in the building. Liyuan did not know the password of the network, but he got some important information from his neighbor. He knew the password consists only of lowercase letters 'a'-'z', and he knew the length of the password. Furthermore, he got a magic word set, and his neighbor told him that the password included at least k words of the magic word set (the k words in the password possibly overlapping).

    For instance, say that you know that the password is 3 characters long, and the magic word set includes 'she' and 'he'. Then the possible password is only 'she'.

    Liyuan wants to know whether the information is enough to reduce the number of possible passwords. To answer this, please help him write a program that determines the number of possible passwords.

    思路:

    先建立trie图, end记录以这个点结尾的额字符串标号, 二进制形式.
    同时节点的fail指针的也要一起合并过来.
    在考虑dp[i][j][k], 长度为i, 以j为结尾, 拥有k的字符串种类.
    由上往下更新, trie图上下一个节点, 同时合并结尾字符串累加答案.

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    //#include <memory.h>
    #include <queue>
    #include <set>
    #include <map>
    #include <algorithm>
    #include <math.h>
    #include <stack>
    #include <string>
    #include <assert.h>
    #include <iomanip>
    #include <iostream>
    #include <sstream>
    #define MINF 0x3f3f3f3f
    using namespace std;
    typedef long long LL;
    const LL MOD = 20090717;
    const LL MAXN = 110;
    const int MAXASCII = 26;
    
    struct TrieTree
    {
        int Next[MAXASCII];
        int end;
        int fail;
        void Clear()
        {
            memset(Next, 0, sizeof(Next));
            end = 0;
        }
    }tree[MAXN];
    
    char s[MAXN];
    LL Dp[26][110][1<<10];
    int n, m, k, cnt;
    
    void Insert(char *s, int x)
    {
        int len = strlen(s);
        int p = 0;
        for (int i = 0;i < len;i++)
        {
            if (tree[p].Next[s[i]-'a'] == 0)
                tree[p].Next[s[i]-'a'] = ++cnt, tree[cnt].Clear();
            p = tree[p].Next[s[i]-'a'];
        }
        tree[p].end |= 1<<x;
    }
    
    void BuildAC()
    {
        queue<int> que;
        for (int i = 0;i < MAXASCII;i++)
        {
            if (tree[0].Next[i] != 0)
            {
                tree[tree[0].Next[i]].fail = 0;
                que.push(tree[0].Next[i]);
            }
        }
        while (!que.empty())
        {
            int u = que.front();
            que.pop();
            tree[u].end |= tree[tree[u].fail].end;
            for (int i = 0;i < MAXASCII;i++)
            {
                if (tree[u].Next[i] != 0)
                {
                    tree[tree[u].Next[i]].fail = tree[tree[u].fail].Next[i];
                    que.push(tree[u].Next[i]);
                }
                else
                    tree[u].Next[i] = tree[tree[u].fail].Next[i];
            }
        }
    }
    
    int GetK(int val)
    {
        int cn = 0;
        for (int i = 0;i < m;i++)
        {
            if ((1<<i) & val)
                cn++;
        }
        return cn;
    }
    
    LL Cal()
    {
        memset(Dp, 0, sizeof(Dp));
        Dp[0][0][0] = 1;
        for (int i = 0;i < n;i++)
        {
            for (int j = 0;j <= cnt;j++)
            {
                for (int w = 0; w < (1<<m); ++w)
                {
                    if (Dp[i][j][w] == 0)
                        continue;
                    for (int t = 0;t < MAXASCII;t++)
                    {
                        Dp[i+1][tree[j].Next[t]][w|tree[tree[j].Next[t]].end] += Dp[i][j][w];
                        Dp[i+1][tree[j].Next[t]][w|tree[tree[j].Next[t]].end] %= MOD;
                    }
                }
            }
        }
        LL sum = 0;
        for (int i = 0;i <= cnt;i++)
        {
            for (int w = 0;w < (1<<m);w++)
            {
                if (GetK(w) >= k)
                    sum = (sum+Dp[n][i][w])%MOD;
            }
        }
        return sum;
    }
    
    int main()
    {
        while (~scanf("%d%d%d", &n, &m, &k))
        {
            if (n == 0 && m == 0 && k == 0)
                break;
            cnt = 0;
            tree[cnt].Clear();
            for (int i = 0;i < m;i++)
            {
                scanf("%s", s);
                Insert(s, i);
            }
            BuildAC();
            printf("%lld
    ", Cal());
        }
    
        return 0;
    }
    
  • 相关阅读:
    反射类的字段
    反射类的方法(其中main方法比较特殊)
    反这类的构造函数(写框架时才会用到反射类)
    枚举
    进制转换小算法
    第一个小程序:用户登录
    Hello World!
    潭州课堂25班:Ph201805201 tornado 项目 第五课 增加用户系统-用户中心(课堂笔记)
    潭州课堂25班:Ph201805201 tornado 项目 第四课 增加用户注册登录(课堂笔记)
    潭州课堂25班:Ph201805201 tornado 项目 第三课 项目 图片上传,展示 (课堂笔记)
  • 原文地址:https://www.cnblogs.com/YDDDD/p/11639170.html
Copyright © 2011-2022 走看看