zoukankan      html  css  js  c++  java
  • Max Points on a Line



    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.

    大意为:给定二维平面的一组points,从中找出在同一直线上的最多的点的数量并返回



    最直白最简单的算法是采用遍历法,用两层遍历,先从中选定一个点,再遍历所有的点,找出与其斜率相等的点,然后更新定义的maxNum。最后即得到答案。

    大致步骤为:

                    1.第一层遍历选中一个点a(x1, y1)

                    2.第二层遍历所有的点b(x2,y2),若

                                                                1)x1 = x2且 y1 = y2,将samepoints++(自己声明的变量,表示相同点的个数);

                                                                2)x1 = x2且y1 != y2, 将其斜率置为INT_MAX,并将其对应的点数加一

                                                                3)k = (float)(y1 - y2)/(x1 - x2),将k对应的点数加一

                   3.一次循环结束,更新maxNum = MAX((K)对应的点数 + samepoints)

                   4.所有循环结束,返回maxNum即可。


    /**
     * Definition for a point.
     * struct Point {
     *     int x;
     *     int y;
     *     Point() : x(0), y(0) {}
     *     Point(int a, int b) : x(a), y(b) {}
     * };
     */

    //自己声明的一个结构体
     struct element
     {
      float k;
         int kNum;
         element():k(0.0), kNum(0){}
     };
     
    class Solution {
    public:
        int maxPoints(vector<Point>& points) {
            int maxNum = 0;
            bool IsFind = false;
            
            for(int i= 0; i < points.size(); i++)
            {
                //同位置的点
                int samePoint = 0;  
                //存储元素
                vector<struct element> kVec;
                
                for(int j = 0; j < points.size(); j++)
                {
                    //同点
                    if(points[i].y == points[j].y && points[i].x == points[j].x)
                    {
                        samePoint++;
                    }
                    //无k
                    else if(points[i].x == points[j].x)
                    {
                        for(int m = 0; m < kVec.size(); m++)
                        {
                            if(kVec[m].k == INT_MAX)
                            {
                                kVec[m].kNum++;
                                IsFind = true;
                                break;
                            }
                        }
                        if(!IsFind)
                        {
                            struct element el;
                            el.k = INT_MAX;
                            el.kNum = 1;
                            kVec.push_back(el);
                        }
                        else
                        {
                            IsFind = false;
                        }
                    }
                    
                    //正常情况
                    else
                    {
                        float k = (float)(points[j].y - points[i].y) / (points[j].x - points[i].x);
                        for(int m = 0; m < kVec.size(); m++)
                        {
                            if(kVec[m].k == k)
                            {
                                kVec[m].kNum++;
                                IsFind = true;
                                break;
                            }
                        }
                        if(!IsFind)
                        {
                            struct element el;
                            el.k = k;
                            el.kNum = 1;
                            kVec.push_back(el);
                        }
                        else
                        {
                            IsFind = false;
                        }
                    }
                }
                
                if(kVec.empty())
                    return samePoint;
                //找最大的
                for(int i = 0; i < kVec.size(); i++)
                {
                    if(maxNum < kVec[i].kNum + samePoint)
                    {
                        maxNum = kVec[i].kNum + samePoint;
                    }
                }
            }
            return maxNum;
        }
    };



      1.本题虽然解出来了,但是有一定的局限,即假定了k没有取到INT_MAX(代码中将其作为K为无穷时的斜率)的取值,并且假定k在float的取值范围内。不过在LeetCode平台能通过,那就是满足题目要求。

      2.本题还可以利用c++STL中的map来存储k对应点的个数,即声明一个map<float, int>的变量,详细解答及代码可参见博文http://blog.csdn.net/doc_sgl/article/details/17103427

  • 相关阅读:
    delphi idhttpserver ajax 跨域解决方法
    【转】安卓apk反编译(三件套) (com.googlecode.d2j.DexException: not support version问题解决)
    C++ volatile的作用
    GetProcAddress函数
    c++ CArray函数
    CString中TrimLeft()与TrimRight()的用法
    使用Windows API进行串口编程
    SetCommMask
    AttachThreadInput
    关于CoInitialize和CoUninitialize调用的有关问题
  • 原文地址:https://www.cnblogs.com/YJthua-china/p/5042293.html
Copyright © 2011-2022 走看看