链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1081
这道题使用到的算法是:预处理+最大连续子串和
如果会做最大连续子串和,那么理解这题就相对简单一些,若不知道最大连续子串和,建议先看一下这两题:
http://acm.hdu.edu.cn/showproblem.php?pid=1003
http://www.cnblogs.com/YY56/p/4855766.html
To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10107 Accepted Submission(s): 4864
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1
8 0 -2
Sample Output
15
之前一直不理解虽知道是dp,却不知这是从何而来的,如何计算,
代码1:
#include<stdio.h> #include<string.h> #include<stdlib.h> #define N 200 #define oo 0x3f3f3f3f int a[N][N], dp[N][N]; int main() { int n; while(scanf("%d", &n)!=EOF) { int i, j, j1, j2; memset(dp, 0, sizeof(dp)); for(i=1; i<=n; i++) for(j=1; j<=n; j++) { scanf("%d", &a[i][j]); dp[i][j] = dp[i][j-1] + a[i][j]; /// dp[i][j] i 代表的是第 i 行,j 代表的是这行前 j 个数的和 } int S = 0; for(j1=1; j1<=n; j1++) for(j2=j1; j2<=n; j2++) { /** * i 很明显代表的是行数 * j1 从第几列开始 * j2 从第几列结束 **/ int mx=0, my=0; for(i=1; i<=n; i++) { mx += dp[i][j2] - dp[i][j1-1]; /// mx 代表的是前 i 行里,从第j1-1列到j2列的和(相当于矩阵了) if(mx>=0) { if(mx>my) my = mx; /// my 记录的是前 i 行里,从第j1-1列到第j2列矩阵的最大和 } else mx = 0; } if(my>=S) S = my; /// S 里面存的肯定是在所有矩阵中取最大值 } printf("%d ", S); } return 0; }
代码2:
#include<stdio.h> #include<string.h> #include<stdlib.h> #define max2(a,b) (a>b?a:b) #define N 110 #define INF 0xfffffff int a[N][N], b[N][N][N]; int main() { int n; while(scanf("%d", &n)!=EOF) { int i, j, k, x, max1; memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); for(i=1; i<=n; i++) for(j=1; j<=n; j++) scanf("%d", &a[i][j]); max1=-INF; for(i=1; i<=n; i++) for(j=1; j<=n; j++) for(x=0, k=j; k>0; k--) { x += a[i][k]; b[i][j][k] = max2(b[i][j][k], b[i-1][j][k]) + x; if(b[i][j][k]>max1) max1 = b[i][j][k]; } printf("%d ", max1); } return 0; }
题目比较水暴力也可以过
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; #define met(a,b) (memset(a,b,sizeof(a))) #define N 110 #define INF 0xffffff int a[N][N], sum[N][N]; int main() { int n; while(scanf("%d", &n)!=EOF) { int i, j, i1, j1, Max=-INF; met(a, 0); met(sum, 0); for(i=1; i<=n; i++) for(j=1; j<=n; j++) { scanf("%d", &a[i][j]); } for(i=1; i<=n; i++) for(j=1; j<=n; j++) sum[i][j] = sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1] + a[i][j]; for(i=0; i<=n; i++) for(j=0; j<=n; j++) for(i1=i+1; i1<=n; i1++) for(j1=j+1; j1<=n; j1++) { Max = max(Max, sum[i1][j1]-sum[i1][j]-sum[i][j1]+sum[i][j]); } printf("%d ", Max); } return 0; }