zoukankan      html  css  js  c++  java
  • (DP)To The Max --HDU -- 1081

    链接:

    http://acm.hdu.edu.cn/showproblem.php?pid=1081

    这道题使用到的算法是:预处理+最大连续子串和

    如果会做最大连续子串和,那么理解这题就相对简单一些,若不知道最大连续子串和,建议先看一下这两题:

    http://acm.hdu.edu.cn/showproblem.php?pid=1003

    http://www.cnblogs.com/YY56/p/4855766.html

    To The Max

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 10107    Accepted Submission(s): 4864


    Problem Description
    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2

    is in the lower left corner:

    9 2
    -4 1
    -1 8

    and has a sum of 15.
     
    Input
    The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
     
    Output
    Output the sum of the maximal sub-rectangle.
     
    Sample Input
    4
    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2
     
    Sample Output
    15
     
    之前一直不理解虽知道是dp,却不知这是从何而来的,如何计算,

    代码1:

    #include<stdio.h>
    #include<string.h>
    #include<stdlib.h>
    
    #define N 200
    #define oo 0x3f3f3f3f
    
    int a[N][N], dp[N][N];
    
    int main()
    {
        int  n;
    
        while(scanf("%d", &n)!=EOF)
        {
            int i, j, j1, j2;
    
            memset(dp, 0, sizeof(dp));
            for(i=1; i<=n; i++)
            for(j=1; j<=n; j++)
            {
                scanf("%d", &a[i][j]);
                dp[i][j] = dp[i][j-1] + a[i][j];  /// dp[i][j] i 代表的是第 i 行,j 代表的是这行前 j 个数的和 
            }
    
            int S = 0;
            for(j1=1; j1<=n; j1++)    
            for(j2=j1; j2<=n; j2++)
            {
    
          /** 
          
          * i   很明显代表的是行数
          * j1  从第几列开始
          * j2  从第几列结束
          
          **/
          
                int mx=0, my=0;
    
                for(i=1; i<=n; i++)  
                {
                    mx += dp[i][j2] - dp[i][j1-1];  /// mx 代表的是前 i 行里,从第j1-1列到j2列的和(相当于矩阵了)
    
                    if(mx>=0)
                    {
                        if(mx>my) my = mx;  /// my 记录的是前 i 行里,从第j1-1列到第j2列矩阵的最大和
                    }
                    else mx = 0;
                }
                if(my>=S) S = my;  /// S 里面存的肯定是在所有矩阵中取最大值
            }
    
            printf("%d
    ", S);
        }
    
        return 0;
    }

    代码2:

    #include<stdio.h>
    #include<string.h>
    #include<stdlib.h>
    #define max2(a,b) (a>b?a:b)
    
    #define N 110
    #define INF 0xfffffff
    
    int a[N][N], b[N][N][N];
    
    int main()
    {
        int n;
        while(scanf("%d", &n)!=EOF)
        {
            int i, j, k, x, max1;
    
            memset(a, 0, sizeof(a));
            memset(b, 0, sizeof(b));
    
            for(i=1; i<=n; i++)
            for(j=1; j<=n; j++)
                scanf("%d", &a[i][j]);
    
            max1=-INF;
            for(i=1; i<=n; i++)
            for(j=1; j<=n; j++)
            for(x=0, k=j; k>0; k--)
            {
                x += a[i][k];
    
                b[i][j][k] = max2(b[i][j][k], b[i-1][j][k]) + x;
    
                if(b[i][j][k]>max1)
                    max1 = b[i][j][k];
            }
    
            printf("%d
    ", max1);
        }
        return 0;
    }

    题目比较水暴力也可以过

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    
    #define met(a,b) (memset(a,b,sizeof(a)))
    #define N 110
    #define INF 0xffffff
    
    int a[N][N], sum[N][N];
    
    int main()
    {
        int n;
    
        while(scanf("%d", &n)!=EOF)
        {
            int i, j, i1, j1, Max=-INF;
    
            met(a, 0);
            met(sum, 0);
    
            for(i=1; i<=n; i++)
            for(j=1; j<=n; j++)
            {
                scanf("%d", &a[i][j]);
            }
    
            for(i=1; i<=n; i++)
            for(j=1; j<=n; j++)
                sum[i][j] = sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1] + a[i][j];
    
            for(i=0; i<=n; i++)
            for(j=0; j<=n; j++)
            for(i1=i+1; i1<=n; i1++)
            for(j1=j+1; j1<=n; j1++)
            {
                Max = max(Max, sum[i1][j1]-sum[i1][j]-sum[i][j1]+sum[i][j]);
            }
    
            printf("%d
    ", Max);
        }
        return 0;
    }
    勿忘初心
  • 相关阅读:
    P3332 [ZJOI2013]K大数查询
    树上最短路---------------树链剖分,优化建边。
    BZOJ_4386
    2016_1_13(3)
    2016_1_13(2)
    2016_1_13
    BZOJ_1698
    BZOJ_4152
    BZOJ_3110
    BZOJ_2141
  • 原文地址:https://www.cnblogs.com/YY56/p/4747548.html
Copyright © 2011-2022 走看看