http://acm.hdu.edu.cn/showproblem.php?pid=3766
Knight's Trip
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 482 Accepted Submission(s): 106
Problem Description
In chess, each move of a knight consists of moving by two squares horizontally and one square vertically, or by one square horizontally and two squares vertically. A knight making one move from location (0,0) of an infinite chess board would end up at one of the following eight locations: (1,2), (-1,2), (1,-2), (-1,-2), (2,1), (-2,1), (2,-1), (-2,-1).
Starting from location (0,0), what is the minimum number of moves required for a knight to get to some other arbitrary location (x,y)?
Starting from location (0,0), what is the minimum number of moves required for a knight to get to some other arbitrary location (x,y)?
Input
Each line of input contains two integers x and y, each with absolute value at most one billion. The integers designate a location (x,y) on the infinite chess board. The final line contains the word END.
Output
For each location in the input, output a line containing one integer, the minimum number of moves required for a knight to move from (0,0) to (x, y).
Sample Input
1 2、
2 4
END
Sample Output
1
2
/** 首先,xy的大小排序和转化为都是正数步数不变应该懂吧。 y=2*x这种情况直接就是(x+y)/3步。 如果y<2*x但是(x+y)%3==0的话,那么我们可以通过控制(1,2),(2,1) 两种跳法的次数达到...总数必然是(x+y)/3,然后xy的和对3取余是1的话, 我们是不是必然可以在(x+y-1)/3步的时候跳到(x,y-1)这个点,但是不能一步 跳到(x,y),回撤两步到(x-4,y-5)这个点,我们可以用三步跳到(x,y),那么 就是原先的步数+1。余数为2,就是先跳到(x-1,y-1)这个地方,我们知道(0,0) 到(1,1)只需要两步,那么(x-1,y-1)到(x,y)也就是原先步数+2.然后考虑y>2*x, 先把(0,1)的情况特殊处理一下。接着我们可以用x步跳到(x,y),那么原问题就 转化为(0,0)到(0,y-2*x)。当y-2*x是4的倍数的话我们可以直接(1,2)(-1,2)这个 跳可以在(y-2*x)/2步到达。余数为1,就是(0,0)到(0,1)的问题,但是这个需要 三步不是最优的,我们后撤两步变为(0,0)到(0,5),我们可以三步达到,那么就 是原先的步数加上1就是解。余数为2,我们可以分别跳一次(2,1)(-2,1)到达。 余数为3,转化为(0,0)到(0,3)的问题我们可以(-1,2)(1,1)(0,3)三步到达。 以上就是全部情况,o(╯□╰)o,在纸上画画,应该所有在这这几类范围内。 **/ #include<stdio.h> #include<string.h> int main() { char c[20]; while(scanf("%s", c), strcmp(c, "END")) { int x, y; int k; sscanf(c, "%d", &x); scanf("%d", &y); if(x<0) x = -x; if(y<0) y = -y; if(y<x) {k=x, x=y, y=k;} if(y<=2*x) { if(x==1 && y==1) printf("2 "); else if(x==2 && y==2) printf("4 "); else printf("%d ", (x+y)/3+(x+y)%3); } else { int ans = x; int c=(y-2*x)%4; ans += c; ans += (y-2*x-c)/2; if(y==1 && x==0) ans = 3; printf("%d ", ans); } } return 0; }