zoukankan      html  css  js  c++  java
  • (状压) Brush (IV) (Light OJ 1018)

     

    Mubashwir returned home from the contest and got angry after seeing his room dusty. Who likes to see a dusty room after a brain storming programming contest? After checking a bit he found an old toothbrush in his room. Since the dusts are scattered everywhere, he is a bit confused what to do. So, he called Shakib. Shkib said that, 'Use the brush recursively and clean all the dust, I am cleaning my dust in this way!'

    So, Mubashwir got a bit confused, because it's just a tooth brush. So, he will move the brush in a straight line and remove all the dust. Assume that the tooth brush only removes the dusts which lie on the line. But since he has a tooth brush so, he can move the brush in any direction. So, he counts a move as driving the tooth brush in a straight line and removing the dusts in the line.

    Now he wants to find the maximum number of moves to remove all dusts. You can assume that dusts are defined as 2D points, and if the brush touches a point, it's cleaned. Since he already had a contest, his head is messy. That's why he wants your help.

    Input

    Input starts with an integer T (≤ 1000), denoting the number of test cases.

    Each case starts with a blank line. The next line contains three integers N (1 ≤ N ≤ 16)N means that there are N dust points. Each of the next N lines will contain two integers xi yi denoting the coordinate of a dust unit. You can assume that (-1000 ≤ xi, yi ≤ 1000) and all points are distinct.

    Output

    For each case print the case number and the minimum number of moves.

    Sample Input

    Output for Sample Input

    2

     

    3

    0 0

    1 1

    2 2

     

    3

    0 0

    1 1

    2 3

    Case 1: 1

    Case 2: 2


    题目大意:
     
    给你n个点, 求最少的直线将所有的点都覆盖
     
     
    记忆化搜索:
     
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<queue>
    #include<vector>
    #include<map>
    using namespace std;
    typedef unsigned long long LL;
    #define met(a,b) (memset(a,b,sizeof(a)))
    const int INF = 1e9+7;
    const int maxn = 105;
    const int MOD = 9973;
    
    struct node
    {
        int x, y;
    } a[20];
    
    int dp[(1<<17)], n;
    int Line[20][20];
    ///Line[i][j] 代表与线段ij共线的点
    
    int DFS(int sta)
    {
        if(dp[sta]!=-1) return dp[sta];
    
        dp[sta] = INF;
        int cnt=0;
        for(int i=0; i<n; i++)
            if(sta&(1<<i)) cnt++;
    
        if(cnt==0) return dp[sta]=0;
        else if(cnt<=2) return dp[sta]=1;
    
        for(int i=0; i<n; i++)
        {
            if(sta&(1<<i))///第i个物品
            {
                for(int j=i+1; j<n; j++)
                {
                    int w = (sta|Line[i][j]) - Line[i][j];
                    dp[sta] = min(dp[sta], DFS(w)+1);
                }
                break;
                ///优化,只需找到sta中的一个点即可, Line[i][j]会将所有的i到i后面的点都遍历一遍的
            }
        }
        return dp[sta];
    }
    
    int main()
    {
        int T, iCase = 1;
        scanf("%d", &T);
    
        while(T --)
        {
            int i, j, k, K;
            scanf("%d", &n);
    
            K = (1<<n)-1;
            met(dp, -1);
            met(Line, 0);
            for(i=0; i<n; i++)
            {
                scanf("%d%d", &a[i].x, &a[i].y);
                Line[i][i] = (1<<i);
            }
    
            for(i=0; i<n; i++)
            for(j=i+1; j<n; j++)
            for(k=0; k<n; k++)
            {   ///判断三点是否共线
                if( (a[i].x-a[k].x)*(a[i].y-a[j].y) == (a[i].x-a[j].x)*(a[i].y-a[k].y) )
                    Line[i][j] += (1<<k);
            }
    
            printf("Case %d: %d
    ", iCase++, DFS(K));
        }
        return 0;
    }

    先预处理出来每条线段,对每一个状态选择两个不在状态的点,然后画以两个点为端点的线,来进行状态转移

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<queue>
    #include<vector>
    #include<map>
    using namespace std;
    typedef unsigned long long LL;
    #define met(a,b) (memset(a,b,sizeof(a)))
    const int INF = 1e9+7;
    const int maxn = 105;
    const int MOD = 9973;
    
    struct node
    {
        int x, y;
    }a[20];
    
    vector<int>G[(1<<17)];
    int dp[(1<<17)], n;
    int Line[20][20];
    ///Line[i][j] 代表与线段ij共线的点
    
    
    int main()
    {
        int T, iCase = 1, i, j;
    
        for(i=0; i<(1<<16); i++)
        for(j=0; j<16; j++)
        {
            if((i&(1<<j))==0)
             G[i].push_back(j);
        }
    
        scanf("%d", &T);
    
        while(T --)
        {
            int k, K;
            scanf("%d", &n);
    
            K = (1<<n)-1;
            met(dp, INF);
            met(Line, 0);
            for(i=0; i<n; i++)
            {
                scanf("%d%d", &a[i].x, &a[i].y);
                Line[i][i] = (1<<i);
            }
    
            for(i=0; i<n; i++)
            for(j=i+1; j<n; j++)
            for(k=0; k<n; k++)
            {   ///判断三点是否共线
                if( (a[i].x-a[k].x)*(a[i].y-a[j].y) == (a[i].x-a[j].x)*(a[i].y-a[k].y) )
                    Line[i][j] += (1<<k);
            }
    
            dp[0] = 0;
            for(i=0; i<K; i++)
            {
                int len = G[i].size();
                int x=G[i][0], y;
                for(j=0; j<len; j++)
                {
                    y = G[i][j];
                    dp[i|Line[x][y]] = min(dp[i|Line[x][y]], dp[i]+1);
                }
            }
    
            printf("Case %d: %d
    ", iCase++, dp[K]);
        }
        return 0;
    }
    
    /**
    
    2
    
    3
    0 0
    1 1
    2 2
    
    3
    0 0
    1 1
    2 3
    
    */
     
  • 相关阅读:
    使用C# (.NET Core) 实现模板方法模式 (Template Method Pattern)
    使用C# (.NET Core) 实现单体设计模式 (Singleton Pattern)
    使用C# (.NET Core) 实现抽象工厂设计模式 (Abstract Pattern)
    使用C# (.NET Core) 实现简单工厂(Simple Factory) 和工厂方法设计模式 (Factory Method Pattern)
    使用 dynamic 类型让 ASP.NET Core 实现 HATEOAS 结构的 RESTful API
    使用静态基类方案让 ASP.NET Core 实现遵循 HATEOAS Restful Web API
    .NET Core/.NET之Stream简介
    使用C# (.NET Core) 实现装饰模式 (Decorator Pattern) 并介绍 .NET/Core的Stream
    MySQL 导入数据
    MySQL 导出数据
  • 原文地址:https://www.cnblogs.com/YY56/p/5532470.html
Copyright © 2011-2022 走看看