zoukankan      html  css  js  c++  java
  • POJ 3263-Tallest Cow

    Description

    FJ’s N (1 ≤ N ≤ 10,000) cows conveniently indexed 1..N are standing in a line. Each cow has a positive integer height (which is a bit of secret). You are told only the height H (1 ≤ H ≤ 1,000,000) of the tallest cow along with the index I of that cow.

    FJ has made a list of R (0 ≤ R ≤ 10,000) lines of the form “cow 17 sees cow 34”. This means that cow 34 is at least as tall as cow 17, and that every cow between 17 and 34 has a height that is strictly smaller than that of cow 17.

    For each cow from 1..N, determine its maximum possible height, such that all of the information given is still correct. It is guaranteed that it is possible to satisfy all the constraints.

    Input

    Line 1: Four space-separated integers: N, I, H and R
    Lines 2..R+1: Two distinct space-separated integers A and B (1 ≤ A, B ≤ N), indicating that cow A can see cow B.
    Output

    Lines 1..N: Line i contains the maximum possible height of cow i.
    Sample Input

    9 3 5 5
    1 3
    5 3
    4 3
    3 7
    9 8
    Sample Output

    5
    4
    5
    3
    4
    4
    5
    5
    5
    Source

    USACO 2007 January Silver
    .
    .
    .
    .
    .
    .

    分析

    一开始全部高度是最高高度,每输入a看见b,那么如果a和b之间所有奶牛有一头比a高,那么a与b之间所有奶牛全部减1。
    .
    .
    .
    .
    .

    程序:
    #include<iostream>
    using namespace std;
    int main()
    {
        int n,tst,h,r,s[10001],x,y,p,k;
        cin>>n>>tst>>h>>r;
        for (int i=1;i<=n;i++)
        s[i]=h;
        for (int i=1;i<=r;i++)
        {
            cin>>x>>y;
            p=x;
            if (x>y)
            {
                k=x;x=y;y=k;
            }
            for (int j=x+1;j<=y-1;j++)
            if (s[j]>=s[p])
            {
                for (int k=x+1;k<=y-1;k++)
                s[k]--;
                break;
            }
        }
        for (int i=1;i<=n;i++)
        cout<<s[i]<<endl;
        return 0;
    }
  • 相关阅读:
    服务器/服务器架构/阿里云服务器/虚拟机
    第十五章、线程之协程
    第十五章、线程池和进程池
    第十五章、线程之queue模块的各种队列
    第十五章、Python多线程之信号量和GIL
    第十五章、Python多线程同步锁,死锁和递归锁
    第十五章、并发编程之守护线程
    第十五章、并发编程之线程
    抢票小程序
    队列与生产者消费者模型
  • 原文地址:https://www.cnblogs.com/YYC-0304/p/9499910.html
Copyright © 2011-2022 走看看