zoukankan      html  css  js  c++  java
  • Codeforces

    https://codeforc.es/contest/1195/problem/E

    一个能运行但是会T的版本,因为本质上还是(O(nmab))的算法。每次(O(ab))初始化矩阵中的可能有用的点,然后(O(n-a))往下推。

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    #define ERR(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); err(_it, args); }
    
    void err(istream_iterator<string> it) {cerr << "
    ";}
    template<typename T, typename... Args>
    void err(istream_iterator<string> it, T a, Args... args) {
        cerr << *it << "=" << a << ", ";
        err(++it, args...);
    }
    
    #define ERR1(arg,n) { cerr<<""<<#arg<<"=
      "; for(int i=1;i<=n;i++) cerr<<arg[i]<<" "; cerr<<"
    "; }
    #define ERR2(arg,n,m) { cerr<<""<<#arg<<"=
    "; for(int i=1;i<=n;i++) { cerr<<"  "; for(int j=1;j<=m;j++)cerr<<arg[i][j]<<" "; cerr<<"
    "; } }
    
    int n, m, a, b;
    int x, y, z;
    
    int g[3000 * 3000 + 5];
    int h[3005][3005];
    
    struct node {
        int v, x;
        node(int vv, int xx) {
            v = vv;
            x = xx;
        }
    };
    
    int curx, cury;
    
    deque<node> dq;
    
    void calc(int x, int y) {
        curx = x, cury = y;
        while(!dq.empty())
            dq.pop_back();
        for(int i = 1; i <= a; i++) {
            int minline = h[x + i - 1][y];
            for(int j = 2; j <= b; j++) {
                minline = min(minline, h[x + i - 1][y + j - 1]);
            }
            while(!dq.empty() && minline <= dq.back().v) {
                dq.pop_back();
            }
            if(dq.empty() || minline > dq.back().v) {
                dq.push_back(node(minline, x + i - 1));
            }
        }
    }
    
    void move_to_nextline() {
        curx++;
        if(dq.front().x < curx)
            dq.pop_front();
        int minline = h[curx + a - 1][cury];
        for(int j = 2; j <= b; j++) {
            minline = min(minline, h[curx + a - 1][cury + j - 1]);
        }
        while(!dq.empty() && minline <= dq.back().v) {
            dq.pop_back();
        }
        if(dq.empty() || minline > dq.back().v) {
            dq.push_back(node(minline, curx + a - 1));
        }
    }
    
    ll ans = 0;
    
    int main() {
    #ifdef Yinku
        freopen("Yinku.in", "r", stdin);
        //freopen("Yinku.out", "w", stdout);
    #endif // Yinku
        while(~scanf("%d%d%d%d", &n, &m, &a, &b)) {
            scanf("%d%d%d%d", &g[1], &x, &y, &z);
            for(int i = 2; i <= n * m; i++)
                g[i] = (1ll * g[i - 1] * x % z + y) % z;
            for(int i = 1; i <= n; i++)
                for(int j = 1; j <= m; j++)
                    h[i][j] = g[(i - 1) * m + j];
            //ERR2(h, n, m);
            ans = 0;
            for(int i = 1; i + a - 1 <= n; i++) {
                for(int j = 1; j + b - 1 <= m; j++) {
                    calc(i, j);
                    ans += dq.front().v;
                    for(int di = 1; di <= a; di++) {
                        move_to_nextline();
                    }
                    //ERR(ans);
                }
            }
            printf("%lld
    ", ans);
        }
    }
    

    其实不需要重复计算这么多的单调队列。
    具体的思路是这样:
    先把左侧的n行b列插入各行的单调队列dq[i],然后取出各个队列的队首竖着组成单调队列dq2,这个单调队列dq2就可以回答左侧n行b列的所有的最小值,复杂度O(nb)。
    向右移动n个dq[i],再回答左侧n行,[2,b+1]列的所有的最小值,复杂度O(n)。

    总体复杂度O(nm)。

    先用STL写了一个

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    namespace Debug {
    #define ERR(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); err(_it, args); }
    
        void err(istream_iterator<string> it) {cerr << "
    ";}
        template<typename T, typename... Args>
        void err(istream_iterator<string> it, T a, Args... args) {
            cerr << *it << "=" << a << ", ";
            err(++it, args...);
        }
    
    #define ERR1(arg,n) { cerr<<""<<#arg<<"=
      "; for(int i=1;i<=n;i++) cerr<<arg[i]<<" "; cerr<<"
    "; }
    #define ERR2(arg,n,m) { cerr<<""<<#arg<<"=
    "; for(int i=1;i<=n;i++) { cerr<<"  "; for(int j=1;j<=m;j++)cerr<<arg[i][j]<<" "; cerr<<"
    "; } }
    }
    
    int n, m, a, b;
    int x, y, z;
    int g[3005 * 3005];
    int h[3005][3005];
    
    ll ans;
    
    struct Node {
        int val;
        int id;
        Node() {}
        Node(int val, int id): val(val), id(id) {}
    
        friend bool operator>=(const Node& n, const int& v) {
            return n.val >= v;
        }
        friend bool operator>=(const Node& n1, const Node& n2) {
            return n1.val >= n2.val;
        }
    };
    
    deque<Node> dq[3005];
    void init_deque(int i) {
        dq[i].clear();
        for(int j = 1; j <= b; j++) {
            while(!dq[i].empty() && dq[i].back() >= h[i][j]) {
                dq[i].pop_back();
            }
            dq[i].push_back({h[i][j], j});
        }
    }
    
    void move_deque(int j) {
        for(int i = 1; i <= n; i++) {
            if(dq[i].front().id < j - b + 1) {
                dq[i].pop_front();
            }
            while(!dq[i].empty() && dq[i].back() >= h[i][j]) {
                dq[i].pop_back();
            }
            dq[i].push_back({h[i][j], j});
        }
    }
    
    deque<Node> dq2;
    void calc_ans(int oj) {
        dq2.clear();
        for(int i = 1; i <= a; i++) {
            while(!dq2.empty() && dq2.back() >= dq[i].front())
                dq2.pop_back();
            dq2.push_back({dq[i].front().val, i});
        }
        ans += dq2.front().val;
        for(int i = a + 1; i <= n; i++) {
            if(dq2.front().id < i - a + 1)
                dq2.pop_front();
            while(!dq2.empty() && dq2.back() >= dq[i].front())
                dq2.pop_back();
            dq2.push_back({dq[i].front().val, i});
            ans += dq2.front().val;
        }
    }
    int main() {
    #ifdef Yinku
        freopen("Yinku.in", "r", stdin);
        //freopen("Yinku.out", "w", stdout);
    #endif // Yinku
        while(~scanf("%d%d%d%d", &n, &m, &a, &b)) {
            scanf("%d%d%d%d", &g[1], &x, &y, &z);
            for(int i = 2; i <= n * m; i++)
                g[i] = (1ll * g[i - 1] * x % z + y) % z;
            for(int i = 1; i <= n; i++)
                for(int j = 1; j <= m; j++)
                    h[i][j] = g[(i - 1) * m + j];
            for(int i = 1; i <= n; i++) {
                init_deque(i);
            }
            ans = 0;
            calc_ans(b);
            for(int nj = b + 1; nj <= m; nj++) {
                move_deque(nj);
                calc_ans(nj);
            }
            printf("%lld
    ", ans);
        }
    }
    
  • 相关阅读:
    day01
    day02
    Linux安装Redis、PHP安装Redis扩展模块
    数据类型
    Redis常用命令
    Redis高级实用特性
    php操作redis案例
    (转)java二维数组的深度学习(静态与动态)
    java二维数组学习(转)
    java一维数组学习
  • 原文地址:https://www.cnblogs.com/Yinku/p/11205792.html
Copyright © 2011-2022 走看看