zoukankan      html  css  js  c++  java
  • 论文阅读《LEX-BERT: Enhancing BERT based NER with lexicons》

    key value
    论文名称 LEX-BERT: Enhancing BERT based NER with lexicons
    一作 Wei Zhu
    单位 上海华东师范大学; 圣地亚哥AI4ALL
    发表 ICLR 2021
    领域 命名实体识别
    主要贡献 提出一种将词信息融入到字嵌入的方法
    基础模型 Chinese BERT-wwm-ext
    优化器 AdamW
    数据集 Chinese Ontonotes 4.0; ZhCrossNER
    最终成绩 成绩超过BERT和FLAT; 推理时间更短
    摘要 In this work, we represent Lex-BERT, which incorporates the lexicon information into Chinese BERT for named entity recognition (NER) tasks in a natural manner. Instead of using word embeddings and a newly designed transformer layer as in FLAT, we identify the boundary of words in the sentences using special tokens, and the modified sentence will be encoded directly by BERT. Our model does not introduce any new parameters and are more efficient than FLAT. In addition, we do not require any word embeddings accompanying the lexicon collection. Experiments on MSRA and ZhCrossNER show that our model outperforms FLAT and other baselines.
    论文链接 https://arxiv.org/pdf/2101.00396.pdf
    源码链接

    主要内容

    本文提出一种更加优雅的方法,将词信息融入到字嵌入中去,如下图,在每个词第一个字对应的位置上,加上词的词性标签(文中称为marker),且和text中的token共享位置id

    另外在attention mask上,text tokens只能看到彼此,看不到marker,而marker是可以看到所有的。注意力掩码如下图所示:

    成绩

    成绩比FLAT更好,虽然领先不多。

    推理速度

    本文的做法非常优雅,相比FLAT,确实达到了简单且高效,只可惜数据集太少(只有两个且其中一个还是作者自己的数据集),需要补充在其他数据集上的成绩,才能得出更具有说服力的结论。

  • 相关阅读:
    0401-服务注册与发现、Eureka简介
    001-OSI七层模型,TCP/IP五层模型
    云原生应用开发12-Factors
    0301-服务提供者与服务消费者
    0201-开始使用Spring Cloud实战微服务准备工作
    0107-将Monolith重构为微服务
    0106-选择微服务部署策略
    0105-微服务的事件驱动的数据管理
    0104-微服务体系结构中的服务发现
    0103-微服务架构中的进程间通信
  • 原文地址:https://www.cnblogs.com/YoungF/p/14286622.html
Copyright © 2011-2022 走看看