Description
给(n)组操作,每组操作形式为(x;y;p)。
当(p)为(1)时,如果第(x)变量和第(y)个变量可以相等,则输出(YES),并限制他们相等;否则输出(NO),并忽略此次操作。
当(p)为(0)时,如果第(x)变量和第(y)个变量可以不相等,则输出(YES),并限制他们不相等 ;否则输出(NO),并忽略此次操作。
Input
输入一个数(n)表示操作的次数((n<=10^5))
接下来(n)行每行三个数(x;y;p) ((x,y<=10^8,0≤p≤1))
Output
对于(n)行操作,分别输出(n)行(YES)或者(NO)
Solution
没想到假的启发式合并也能A题啊。。。
正解其实跟考试时候的思路差不多
但是不是维护每个联通块的大小
因为有可能一个联通块大小比较小但是连出去的边有很多
所以我们要换一种数据结构维护每个联通块连出去了多少条边
用什么数据结构可以维护大小,快速查找两个元素是否有关系呢?
嗯... (STL) 的 (set) 是符合要求的 查询大小是 (O(1)) 的,查找是 (O(nlogn)) 的
所以我们用一个 (set) (s[i]) 表示以 (i) 为根的联通块连出去的边(这里连边表示规定两个联通块严格不相等)
考虑操作
如果要求两个变量相等,那么就在两个联通块的 (set) 里找是否存在一条边连到了对方,如果有,那么此条件无法满足。
如果要求两个变量不相等,那么假设它们不在一个联通块里,需要合并这两个联通块,就要用到启发式合并了。
注意到我们已经记录了两个联通块连出去边的个数了, 为了保证复杂度,一定是想让连边少的联通块合并到连边多的联通块里。这就是启发式合并了。
Code
#include<set>
#include<map>
#include<cstdio>
#define N 100005
int n,tot;
int ques[N][5];
int father[N<<1];
std::map<int,int> mp;
std::set<int> s[N<<1];
int find(int x){
if(father[x]==x) return x;
return father[x]=find(father[x]);
}
signed main(){
scanf("%d",&n);
for(int x,y,i=1;i<=n;i++){
scanf("%d%d%d",&x,&y,&ques[i][3]);
if(!mp[x]) mp[x]=++tot;
if(!mp[y]) mp[y]=++tot;
ques[i][1]=mp[x];
ques[i][2]=mp[y];
}
for(int i=1;i<=tot;i++) father[i]=i;
for(int i=1;i<=n;i++){
int r1=find(ques[i][1]);
int r2=find(ques[i][2]);
if(ques[i][3]==1){
if(r1==r2) {puts("YES");continue;}
if(s[r1].find(r2)!=s[r1].end() or s[r2].find(r1)!=s[r2].end()){
puts("NO");
continue;
}
if(s[r1].size()>s[r2].size()) r1^=r2^=r1^=r2;
std::set<int>::iterator it;
for(it=s[r1].begin();it!=s[r1].end();it++)
s[r2].insert(*it),s[*it].insert(r2),s[*it].erase(r1);
father[r1]=r2;
puts("YES");
}
else{
if(r1==r2) {puts("NO");continue;}
if(s[r1].find(r2)!=s[r1].end() or s[r2].find(r1)!=s[r2].end()){
puts("YES");
continue;
}
s[r1].insert(r2);
s[r2].insert(r1);
puts("YES");
}
}
return 0;
}