zoukankan      html  css  js  c++  java
  • [HEOI2015] 兔子与樱花

    Description

    很久很久之前,森林里住着一群兔子。有一天,兔子们突然决定要去看樱花。兔子们所在森林里的樱花树很特殊。樱花树由 (n) 个树枝分叉点组成,编号从 (0)(n-1),这 (n) 个分叉点由 (n-1) 个树枝连接,我们可以把它看成一个有根树结构,其中 (0) 号节点是根节点。这个树的每个节点上都会有一些樱花,其中第 (i) 个节点有 (c_i) 朵樱花。樱花树的每一个节点都有最大的载重 (m),对于每一个节点 (i),它的儿子节点的个数和 (i) 节点上樱花个数之和不能超过 (m),即 (son(i) + c_i leq m),其中 (son(i)) 表示 (i) 的儿子的个数,如果 (i) 为叶子节点,则 (son(i) = 0)

    现在兔子们觉得樱花树上节点太多,希望去掉一些节点。当一个节点被去掉之后,这个节点上的樱花和它的儿子节点都被连到删掉节点的父节点上。如果父节点也被删除,那么就会继续向上连接,直到第一个没有被删除的节点为止。

    现在兔子们希望计算在不违背最大载重的情况下,最多能删除多少节点。

    注意根节点不能被删除,被删除的节点不被计入载重。

    Input

    第一行输入两个正整数,(n)(m) 分别表示节点个数和最大载重

    第二行 (n) 个整数 (c_i) ,表示第 (i) 个节点上的樱花个数

    接下来 (n) 行,每行第一个数 (k_i) 表示这个节点的儿子个数,接下来 (k_i)个整数表示这个节点儿子的编号

    Output

    一行一个整数,表示最多能删除多少节点。

    Hint

    对于 (30\%) 的数据,(1leq nleq 5000, 1leq mleq 100, 0leq c_ileq 100)

    对于 (70\%) 的数据,(1leq nleq 200000, 1leq mleq 2000, 0leq c_ileq 1000)

    对于 (100\%) 的数据,(1leq nleq 2000000, 1leq mleq 100000, 0leq c_ileq 1000)

    数据保证初始时,每个节点樱花数与儿子节点个数之和大于 (0) 且不超过 (m)

    Solution

    做法:自底向上,贪心的优先删除每个点的儿子中代价最小的一个。

    贪心:以 (sons[i]+c[i])(i) 点的代价,每个点我们选取代价最小的删除,结果一定不会变差。

    证明:对于 (i) 点和 (i) 的两个儿子 (j,p),假设 (c[j]+sons[j]<c[p]+sons[p]),由决策包容性,选 (j) 优先删除一定比选 (p) 优先删除更优。

    自底向上:从根节点 (dfs) ,从叶子结点向上回溯。路上如果遇到能删除的点就删,不必考虑其祖先。

    证明:设点 (i) 的儿子是 (j)(j) 的兄弟是 (p)(j) 还有一个儿子是 (q)

    (dfs) 的过程中,如果在回溯到 (j) 的时候发现可以删除 (q),那么就删除 (q),并更新 (j) 本身的代价,这样可能会导致无法再回溯到 (i) 点的时候删除 (p)

    粗略想一下这不是有后效性嘛,但是因为贪心删了儿子而导致这个点不能再删,那么我们只会损失一个点,就是该点,而删除儿子至少会删除一个,所以不会亏。。

    综上,自底向上的删除无后效性,满足贪心性质。

    Code

    #include<map>
    #include<cstdio>
    #include<cctype>
    #include<algorithm>
    #define N 2000005
    
    int n,m;
    int ans;
    int c[N];
    int sons[N],cnt;
    int tot[N],l[N],r[N];
    
    inline char nc(){
        static const int BS=1<<22;
        static unsigned char buf[BS],*st,*ed;
        if(st==ed) ed=buf+fread(st=buf,1,BS,stdin);
        return st==ed?EOF:*st++;
    }
    //#define nc getchar
    inline int getint(){
        char ch;
        int res=0;
        while(!isdigit(ch=nc()));
        while(isdigit(ch)){
            res=(res<<1)+(res<<3)+(ch^48);
            ch=nc();
        }
        return res;
    }
    
    bool cmp(int a,int b){
        return sons[a]+c[a]<sons[b]+c[b];
    }
    
    void dfs(int now){
        if(!sons[now]) return;
        for(int i=l[now];i<=r[now];i++)
            dfs(tot[i]);
        std::sort(tot+l[now],tot+r[now]+1,cmp);
        for(int i=l[now];i<=r[now];i++){
            if(c[tot[i]]+sons[tot[i]]+c[now]+sons[now]-1<=m){
                ans++;
                c[now]+=c[tot[i]];
                sons[now]+=sons[tot[i]]-1;
            }
            else break;
        }
    }
    
    signed main(){
        n=getint(),m=getint();
        for(int i=1;i<=n;i++)
            c[i]=getint();
        for(int i=1;i<=n;i++){
            sons[i]=getint();
            l[i]=cnt+1;
            r[i]=cnt+sons[i];
            for(int j=1;j<=sons[i];j++){
                int a=getint()+1;
                tot[++cnt]=a;
            }
        }
        dfs(1);
        printf("%d
    ",ans);
        return 0;
    }
    
  • 相关阅读:
    String驻留带来的危害
    Go语言的堆栈分析
    SecureCRT使用技巧
    Javascript中相同Function使用多个名称
    记录Office Add-in开发经验
    Silverlight和WPF中DataContractJsonSerializer对时间的处理差异
    ASP.NET MVC项目实践技巧
    有点担心Node.js的未来了
    回首经典的SQL Server 2005
    duilib关于学习Demo中的QQ
  • 原文地址:https://www.cnblogs.com/YoungNeal/p/9084704.html
Copyright © 2011-2022 走看看