上一篇文章我详细介绍了如何开发一款高性能的TCP服务器的网络传输层.本章我将谈谈如何开发一个高性能的UDP服务器的网络层.UDP服务器的网络层开 发相对与TCP服务器来说要容易和简单的多,UDP服务器的大致流程为创建一个socket然后将其绑定到完成端口上并投递一定数量的recv操作.当有 数据到来时从完成队列中取出数据发送到接收队列中即可。
测试结果如下:
WindowsXP Professional,Intel Core Duo E4600 双核2.4G , 2G内存。同时30K个用户和该UDP服务器进行交互其CPU使用率为10%左右,内存占用7M左右。
下面详细介绍该服务器的架构及流程:
1. 首先介绍服务器的接收和发送缓存UDP_CONTEXT。
class UDP_CONTEXT : protected NET_CONTEXT2
{3
friend class UdpSer;4
protected:5
IP_ADDR m_RemoteAddr; //对端地址6

7
enum8
{9
HEAP_SIZE = 1024 * 1024 * 5,10
MAX_IDL_DATA = 10000,11
};12

13
public:14
UDP_CONTEXT() {}15
virtual ~UDP_CONTEXT() {}16

17
void* operator new(size_t nSize);18
void operator delete(void* p);19

20
private:21
static vector<UDP_CONTEXT* > s_IDLQue;22
static CRITICAL_SECTION s_IDLQueLock;23
static HANDLE s_hHeap; 24
};UDP_CONTEXT的实现流程和TCP_CONTEXT的实现流程大致相同,此处就不进行详细介绍。
2. UDP_RCV_DATA,当服务器收到客户端发来的数据时会将数据以UDP_RCV_DATA的形式放入到数据接收队列中,其声明如下:
class DLLENTRY UDP_RCV_DATA2
{3
friend class UdpSer;4
public:5
CHAR* m_pData; //数据缓冲区6
INT m_nLen; //数据的长度7
IP_ADDR m_PeerAddr; //发送报文的地址8

9
UDP_RCV_DATA(const CHAR* szBuf, int nLen, const IP_ADDR& PeerAddr);10
~UDP_RCV_DATA();11

12
void* operator new(size_t nSize);13
void operator delete(void* p);14

15
enum16
{17
RCV_HEAP_SIZE = 1024 * 1024 *50, //s_Heap堆的大小18
DATA_HEAP_SIZE = 100 * 1024* 1024, //s_DataHeap堆的大小19
MAX_IDL_DATA = 250000,20
};21

22
private:23
static vector<UDP_RCV_DATA* > s_IDLQue;24
static CRITICAL_SECTION s_IDLQueLock;25
static HANDLE s_DataHeap; //数据缓冲区的堆26
static HANDLE s_Heap; //RCV_DATA的堆27
};UDP_RCV_DATA的实现和TCP_RCV_DATA大致相同, 此处不在详细介绍.
下面将主要介绍UdpSer类, 该类主要用来管理UDP服务.其定义如下:
class DLLENTRY UdpSer2
{3
public:4
UdpSer();5
~UdpSer();6

7
/************************************************************************8
* Desc : 初始化静态资源,在申请UDP实例对象之前应先调用该函数, 否则程序无法正常运行9
************************************************************************/10
static void InitReource();11

12
/************************************************************************13
* Desc : 在释放UDP实例以后, 掉用该函数释放相关静态资源14
************************************************************************/15
static void ReleaseReource();16

17
//用指定本地地址和端口进行初始化18
BOOL StartServer(const CHAR* szIp = "0.0.0.0", INT nPort = 0);19

20
//从数据队列的头部获取一个接收数据, pCount不为null时返回队列的长度21
UDP_RCV_DATA* GetRcvData(DWORD* pCount);22

23
//向对端发送数据24
BOOL SendData(const IP_ADDR& PeerAddr, const CHAR* szData, INT nLen);25

26
/****************************************************27
* Name : CloseServer()28
* Desc : 关闭服务器29
****************************************************/30
void CloseServer();31

32
protected:33
SOCKET m_hSock;34
vector<UDP_RCV_DATA* > m_RcvDataQue; //接收数据队列35
CRITICAL_SECTION m_RcvDataLock; //访问m_RcvDataQue的互斥锁36
long volatile m_bThreadRun; //是否允许后台线程继续运行37
BOOL m_bSerRun; //服务器是否正在运行38

39
HANDLE *m_pThreads; //线程数组40
HANDLE m_hCompletion; //完成端口句柄41

42
void ReadCompletion(BOOL bSuccess, DWORD dwNumberOfBytesTransfered, LPOVERLAPPED lpOverlapped);43

44
/****************************************************45
* Name : WorkThread()46
* Desc : I/O 后台管理线程47
****************************************************/48
static UINT WINAPI WorkThread(LPVOID lpParam);49
};
1. InitReource() 主要对相关的静态资源进行初始化.其实大致和TcpServer::InitReource()大致相同.在UdpSer实例使用之前必须调用该函数进行静态资源的初始化, 否则服务器无法正常使用.
2.ReleaseReource() 主要对相关静态资源进行释放.只有在应用程序结束时才能调用该函数进行静态资源的释放.
3. StartServer()
该函数的主要功能启动一个UDP服务.其大致流程为先创建服务器UDP socket, 将其绑定到完成端口上然后投递一定数量的recv操作以接收客户端的数据.其实现如下:
BOOL UdpSer::StartServer(const CHAR* szIp /* = */, INT nPort /* = 0 */)2
{3
BOOL bRet = TRUE;4
const int RECV_COUNT = 500;5
WSABUF RcvBuf = { NULL, 0 };6
DWORD dwBytes = 0;7
DWORD dwFlag = 0;8
INT nAddrLen = sizeof(IP_ADDR);9
INT iErrCode = 0;10

11
try12
{13
if (m_bSerRun)14
{15
THROW_LINE;16
}17

18
m_bSerRun = TRUE;19
m_hSock = WSASocket(AF_INET, SOCK_DGRAM, 0, NULL, 0, WSA_FLAG_OVERLAPPED);20
if (INVALID_SOCKET == m_hSock)21
{22
THROW_LINE;23
}24
ULONG ul = 1;25
ioctlsocket(m_hSock, FIONBIO, &ul);26

27
//设置为地址重用,优点在于服务器关闭后可以立即启用28
int nOpt = 1;29
setsockopt(m_hSock, SOL_SOCKET, SO_REUSEADDR, (char*)&nOpt, sizeof(nOpt));30

31
//关闭系统缓存,使用自己的缓存以防止数据的复制操作32
INT nZero = 0;33
setsockopt(m_hSock, SOL_SOCKET, SO_SNDBUF, (char*)&nZero, sizeof(nZero));34
setsockopt(m_hSock, SOL_SOCKET, SO_RCVBUF, (CHAR*)&nZero, sizeof(nZero));35

36
IP_ADDR addr(szIp, nPort);37
if (SOCKET_ERROR == bind(m_hSock, (sockaddr*)&addr, sizeof(addr)))38
{39
closesocket(m_hSock);40
THROW_LINE;41
}42

43
//将SOCKET绑定到完成端口上44
CreateIoCompletionPort((HANDLE)m_hSock, m_hCompletion, 0, 0);45

46
//投递读操作47
for (int nIndex = 0; nIndex < RECV_COUNT; nIndex++)48
{49
UDP_CONTEXT* pRcvContext = new UDP_CONTEXT();50
if (pRcvContext && pRcvContext->m_pBuf)51
{52
dwFlag = 0;53
dwBytes = 0;54
nAddrLen = sizeof(IP_ADDR);55
RcvBuf.buf = pRcvContext->m_pBuf;56
RcvBuf.len = UDP_CONTEXT::S_PAGE_SIZE;57

58
pRcvContext->m_hSock = m_hSock;59
pRcvContext->m_nOperation = OP_READ; 60
iErrCode = WSARecvFrom(pRcvContext->m_hSock, &RcvBuf, 1, &dwBytes, &dwFlag, (sockaddr*)(&pRcvContext->m_RemoteAddr)61
, &nAddrLen, &(pRcvContext->m_ol), NULL);62
if (SOCKET_ERROR == iErrCode && ERROR_IO_PENDING != WSAGetLastError())63
{64
delete pRcvContext;65
pRcvContext = NULL;66
}67
}68
else69
{70
delete pRcvContext;71
}72
}73
}74
catch (const long &lErrLine)75
{ 76
bRet = FALSE;77
_TRACE("Exp : %s -- %ld ", __FILE__, lErrLine); 78
}79

80
return bRet;81
}4. GetRcvData(), 从接收队列中取出一个数据包.
UDP_RCV_DATA *UdpSer::GetRcvData(DWORD* pCount)2
{3
UDP_RCV_DATA* pRcvData = NULL;4

5
EnterCriticalSection(&m_RcvDataLock);6
vector<UDP_RCV_DATA* >::iterator iterRcv = m_RcvDataQue.begin();7
if (iterRcv != m_RcvDataQue.end())8
{9
pRcvData = *iterRcv;10
m_RcvDataQue.erase(iterRcv);11
}12

13
if (pCount)14
{15
*pCount = (DWORD)(m_RcvDataQue.size());16
}17
LeaveCriticalSection(&m_RcvDataLock);18

19
return pRcvData;20
}
5. SendData() 发送指定长度的数据包.
BOOL UdpSer::SendData(const IP_ADDR& PeerAddr, const CHAR* szData, INT nLen)2
{3
BOOL bRet = TRUE;4
try5
{6
if (nLen >= 1500)7
{8
THROW_LINE;9
}10

11
UDP_CONTEXT* pSendContext = new UDP_CONTEXT();12
if (pSendContext && pSendContext->m_pBuf)13
{14
pSendContext->m_nOperation = OP_WRITE;15
pSendContext->m_RemoteAddr = PeerAddr; 16

17
memcpy(pSendContext->m_pBuf, szData, nLen);18

19
WSABUF SendBuf = { NULL, 0 };20
DWORD dwBytes = 0;21
SendBuf.buf = pSendContext->m_pBuf;22
SendBuf.len = nLen;23

24
INT iErrCode = WSASendTo(m_hSock, &SendBuf, 1, &dwBytes, 0, (sockaddr*)&PeerAddr, sizeof(PeerAddr), &(pSendContext->m_ol), NULL);25
if (SOCKET_ERROR == iErrCode && ERROR_IO_PENDING != WSAGetLastError())26
{27
delete pSendContext;28
THROW_LINE;29
}30
}31
else32
{33
delete pSendContext;34
THROW_LINE;35
}36
}37
catch (const long &lErrLine)38
{39
bRet = FALSE;40
_TRACE("Exp : %s -- %ld ", __FILE__, lErrLine); 41
}42

43
return bRet;44
}
6. CloseServer() 关闭服务
void UdpSer::CloseServer()2
{3
m_bSerRun = FALSE;4
closesocket(m_hSock);5
}
7. WorkThread() 在完成端口上工作的后台线程
UINT WINAPI UdpSer::WorkThread(LPVOID lpParam)2
{3
UdpSer *pThis = (UdpSer *)lpParam;4
DWORD dwTrans = 0, dwKey = 0;5
LPOVERLAPPED pOl = NULL;6
UDP_CONTEXT *pContext = NULL;7

8
while (TRUE)9
{10
BOOL bOk = GetQueuedCompletionStatus(pThis->m_hCompletion, &dwTrans, &dwKey, (LPOVERLAPPED *)&pOl, WSA_INFINITE);11

12
pContext = CONTAINING_RECORD(pOl, UDP_CONTEXT, m_ol);13
if (pContext)14
{15
switch (pContext->m_nOperation)16
{17
case OP_READ:18
pThis->ReadCompletion(bOk, dwTrans, pOl);19
break;20
case OP_WRITE:21
delete pContext;22
pContext = NULL;23
break;24
}25
}26

27
if (FALSE == InterlockedExchangeAdd(&(pThis->m_bThreadRun), 0))28
{29
break;30
}31
}32

33
return 0;34
}
8.ReadCompletion(), 接收操作完成后的回调函数
void UdpSer::ReadCompletion(BOOL bSuccess, DWORD dwNumberOfBytesTransfered, LPOVERLAPPED lpOverlapped)2
{3
UDP_CONTEXT* pRcvContext = CONTAINING_RECORD(lpOverlapped, UDP_CONTEXT, m_ol);4
WSABUF RcvBuf = { NULL, 0 };5
DWORD dwBytes = 0;6
DWORD dwFlag = 0;7
INT nAddrLen = sizeof(IP_ADDR);8
INT iErrCode = 0;9

10
if (TRUE == bSuccess && dwNumberOfBytesTransfered <= UDP_CONTEXT::S_PAGE_SIZE)11
{12
#ifdef _XML_NET_13
EnterCriticalSection(&m_RcvDataLock);14

15
UDP_RCV_DATA* pRcvData = new UDP_RCV_DATA(pRcvContext->m_pBuf, dwNumberOfBytesTransfered, pRcvContext->m_RemoteAddr);16
if (pRcvData && pRcvData->m_pData)17
{18
m_RcvDataQue.push_back(pRcvData);19
} 20
else21
{22
delete pRcvData;23
}24

25
LeaveCriticalSection(&m_RcvDataLock);26
#else27
if (dwNumberOfBytesTransfered >= sizeof(PACKET_HEAD))28
{29
EnterCriticalSection(&m_RcvDataLock);30

31
UDP_RCV_DATA* pRcvData = new UDP_RCV_DATA(pRcvContext->m_pBuf, dwNumberOfBytesTransfered, pRcvContext->m_RemoteAddr);32
if (pRcvData && pRcvData->m_pData)33
{34
m_RcvDataQue.push_back(pRcvData);35
} 36
else37
{38
delete pRcvData;39
}40

41
LeaveCriticalSection(&m_RcvDataLock);42
}43
#endif44

45
//投递下一个接收操作46
RcvBuf.buf = pRcvContext->m_pBuf;47
RcvBuf.len = UDP_CONTEXT::S_PAGE_SIZE;48

49
iErrCode = WSARecvFrom(pRcvContext->m_hSock, &RcvBuf, 1, &dwBytes, &dwFlag, (sockaddr*)(&pRcvContext->m_RemoteAddr)50
, &nAddrLen, &(pRcvContext->m_ol), NULL);51
if (SOCKET_ERROR == iErrCode && ERROR_IO_PENDING != WSAGetLastError())52
{53
ATLTRACE("
%s -- %ld dwNumberOfBytesTransfered = %ld, LAST_ERR = %ld"54
, __FILE__, __LINE__, dwNumberOfBytesTransfered, WSAGetLastError());55
delete pRcvContext;56
pRcvContext = NULL;57
}58
}59
else60
{61
delete pRcvContext;62
}63
}