zoukankan      html  css  js  c++  java
  • [HEOI2017] 相逢是问候

    Description

    支持以下两个操作:

    • 将第 (l) 个数到第 (r) 个数 (a_l,a_{l+1},dots a_r) 中的每个数 (a_i) 替换为 (c^{a_i})(c) 是给定的常数。
    • 求第 (l) 个数到第 (r) 个数的和,对 (p) 取模。

    (Nleq 50000,pleq 10^8)

    Solution

    首先有一道这题的弱化版:计算(2^{2^{2^{dots}}}\%p) 的值。

    扩展欧拉定理的板子。$$a^bequiv egin{cases}a^{b% phi(p)};;;qquad gcd(a,p)=1a^bqquad;qquad;; gcd(a,p) e1,b<phi(p)a^{b%phi(p)+phi(p)}quad gcd(a,p) e1,bgeqphi(p)end{cases} qquad (mod;p)$$

    首先一个结论是一个数循环取 (phi)(O(log)) 次之后就会变成 (1)。证明大概是奇数变偶数,偶数除以二。

    所以这个简单题就可以不断的取 (phi),当模数变成 (1) 时再递归回来就行了。

    然后看这道省选题。

    最开始还以为 (c) 是每次操作给的数,一直在纠结为啥操作 (O(log)) 次就不变了。。。

    这题难点就是在每次暴力求的时候要注意很多细节。

    一个就是快速幂完了之后不知道指数到底该不该再加上一个 (phi(p))。这个可以在快速幂的过程中判断,具体就是搞一个全区变量 (flag),如果当前 (ans*age p) 的话,就把这个 (flag) 记为 (1)。然后返回之后判一下,如果 (flag)(1) 就加上一个 (phi(p))

    然而这样是三个 (log) 的,不是很过得去。我们需要消掉一个 (log)

    这三个 (log) 分别是 线段树 (1)(log),每个数暴力求 (1)(log),快速幂 (1)(log)

    前面两个好像都不能优化,考虑把快速幂这个优化掉。

    因为 (p) 最大是 (10^8=10^4 imes 10^4),考虑分段打表。

    每次求一个数(a^b)的时候把 (b) 拆成 (b/10000*10000+b\%10000),提前打出来 (a^1,a^2dots a^{10000})(a^{10000},a^{20000}dots a^{10^8})这么多数。然后快速幂的时候直接查表就好了。

    Code

    // luogu-judger-enable-o2
    #pragma GCC optimize(2)
    #include<set>
    #include<map>
    #include<cmath>
    #include<queue>
    #include<cctype>
    #include<vector>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using std::min;
    using std::max;
    using std::swap;
    using std::vector;
    const int N=50005;
    typedef double db;
    #define re register
    typedef long long ll;
    #define pb(A) push_back(A)
    #define pii std::pair<int,int>
    #define mp(A,B) std::make_pair(A,B)
    #define ls cur<<1
    #define rs cur<<1|1
    #define lss ls,l,mid,ql,qr
    #define rss rs,mid+1,r,ql,qr
    
    int n,m,p,c;
    int phi[N],pos,flag;
    pii d[40][10005],e[40][10005];
    int val[N],sum[N<<2],tag[N<<2];
    
    int getint(){
        int X=0,w=0;char ch=0;
        while(!isdigit(ch))w|=ch=='-',ch=getchar();
        while( isdigit(ch))X=X*10+ch-48,ch=getchar();
        if(w) return -X;else return X;
    }
    
    void pushup(int cur){
        sum[cur]=(sum[ls]+sum[rs])%phi[0];
        tag[cur]=min(tag[ls],tag[rs]);
    }
    
    void build(int cur,int l,int r){
        if(l==r){sum[cur]=val[l]%phi[0];return;}int mid=l+r>>1;
        build(ls,l,mid);build(rs,mid+1,r);pushup(cur);
    }
    
    int Phi(re int x){
        int sq=sqrt(x),now=x;
        for(int i=2;i<=x and i<=sq;i++){
            if(x%i==0){
                now=now/i*(i-1);
                while(x%i==0) x/=i;
            }
        } if(x>1) now=now/x*(x-1);
        return now;
    }
    
    int ksm(int a,int b,int mod){
        re int ans=1;int bbb=0;
        while(b){
            if(b&1){
                if((ll)ans*a>=(ll)mod or bbb) flag=1;
                ans=(ll)ans*a%mod;
            }
            if((ll)a*a>=(ll)mod) bbb=1;
            a=(ll)a*a%mod;b>>=1;
        }  if(ans>=mod) flag=1;
        return ans%mod;
    }
    
    
    int calc(int x,int y){
        re int now=x;
        if(now>phi[y]) now=now%phi[y]+phi[y];
        for(re int i=y;i;i--){
            flag=0;int las=now;
            now=(ll)e[i-1][now/10000].first*d[i-1][now%10000].first%phi[i-1];
            flag=(e[i-1][las/10000].second)|(d[i-1][las%10000].second);
            if(flag and i!=1) now+=phi[i-1],flag=0;
        }
        return now%phi[0];
    }
    
    void modify(int cur,int l,int r,int ql,int qr){
        if(tag[cur]>=pos) return;
        if(l==r){
            ++tag[cur];
            sum[cur]=calc(val[l],tag[cur]);
            return;
        } int mid=l+r>>1;
        if(ql<=mid) modify(lss);
        if(mid<qr) modify(rss);
        pushup(cur);
    }
    
    int query(int cur,int l,int r,int ql,int qr){
        if(ql<=l and r<=qr) return sum[cur];
        int mid=l+r>>1,ans=0;
        if(ql<=mid) (ans+=query(lss))%=phi[0];
        if(mid<qr) (ans+=query(rss))%=phi[0];
        return ans;
    }
    
    signed main(){
        n=getint(),m=getint(),p=getint(),c=getint();
        phi[0]=p;while(p!=1) phi[++pos]=Phi(p),p=phi[pos];phi[++pos]=1;
        for(int i=0;i<10000;i++){
            for(int j=0;j<=pos;j++){
                flag=0;
                d[j][i].first=ksm(c,i,phi[j]);d[j][i].second=flag;
            }
        }
        for(int i=0;i<=10000;i++){
            for(int j=0;j<=pos;j++){
                flag=0;
                e[j][i].first=ksm(c,i*10000,phi[j]);e[j][i].second=flag;
            }
        }
        for(re int i=1;i<=n;i++) val[i]=getint();
        build(1,1,n);
        while(m--){
            if(getint()==0){
                int l=getint(),r=getint();
                modify(1,1,n,l,r);
            } else{
                int l=getint(),r=getint();
                printf("%d
    ",query(1,1,n,l,r)%phi[0]);
            }
        } return 0;
    }
    
    
  • 相关阅读:
    linux命令:ls
    linux 进程线程拓展
    linux命令:find
    电动车充电器原理及带电路图维修
    kmalloc分配物理内存与高端内存映射--Linux内存管理(十八)
    Linux内核最新的连续内存分配器(CMA)——避免预留大块内存【转】
    alloc_page分配内存空间--Linux内存管理(十七)
    伙伴系统之避免碎片--Linux内存管理(十六)
    伙伴系统之伙伴系统概述--Linux内存管理(十五)
    USB初学(一)---USB-HID的初步认识【转】
  • 原文地址:https://www.cnblogs.com/YoungNeal/p/9770564.html
Copyright © 2011-2022 走看看