有以无限间隔$D$的水平线分割的平面,在上面随机投下一个圆,圆中有一些点,点之间两两成一条线段,问随机投下至少有一条线段于平行线相交的概率。
以下是不严(luan)谨(lai)的思路。
首先都知道对于任意长度$L$的线段随机投放在无数间隔为$D$的平面,其有相交情况的概率为$frac{2L}{Dpi}$(浦丰投针)
首先考虑线段是垂直平行线的不会发生旋转(固定角度)其随机投放在平面上有交点的概率为$frac{L}{D}$,
但是实际情况是线段会旋转,其对应在垂直平行线上的投影长度的期望为$frac{2L}{pi}$,重新代入到$L$就是上面那个概率公式,
现在由于圆内点两两间都有线段,要考虑圆内为一个整体,不妨直接拿多边形的边(因为其他线段的投影都在其投影内)来计算它们的投影长度的期望,得到的结果其实也就是点集凸包的周长除以$pi$
然后代入:$frac{c}{Dpi}$ ,会发现是个水题
/** @Date : 2017-09-24 22:35:19 * @FileName: HDU 4978 凸包 计算.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long long #define PII pair<int ,int> #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; const double Pi = acos(-1.0); struct point { double x, y; point(){} point(double _x, double _y){x = _x, y = _y;} point operator -(const point &b) const { return point(x - b.x, y - b.y); } double operator *(const point &b) const { return x * b.x + y * b.y; } double operator ^(const point &b) const { return x * b.y - y * b.x; } }; double xmult(point p1, point p2, point p0) { return (p1 - p0) ^ (p2 - p0); } double distc(point a, point b) { return sqrt((double)((b - a) * (b - a))); } int sign(double x) { if(fabs(x) < eps) return 0; if(x < 0) return -1; else return 1; } //////// int n; point stk[N]; point p[N]; int cmpC(point a, point b)//水平序排序 { return sign(a.x - b.x) < 0 || (sign(a.x - b.x) == 0 && sign(a.y - b.y) < 0); } int Graham(point *p, int n)//水平序 { sort(p, p + n, cmpC); int top = 0; for(int i = 0; i < n; i++) { while(top >= 2 && sign(xmult(stk[top - 2], stk[top - 1], p[i])) < 0) top--; stk[top++] = p[i]; } int tmp = top; for(int i = n - 2; i >= 0; i--) { while(top > tmp && sign(xmult(stk[top - 2],stk[top - 1] ,p[i] )) < 0) top--; stk[top++] = p[i]; } if(n > 1) top--; return top; } int main() { int T; cin >> T; int c = 0; while(T--) { int n; double d; cin >> n >> d; double x, y; for(int i = 0; i < n; i++) { scanf("%lf%lf", &x, &y); p[i] = point(x, y); } int m = Graham(p, n); double ans = 0.0; stk[m++] = stk[0];//注意只有直线的情况 for(int i = 0; i < m - 1; i++) ans += distc(stk[i], stk[i + 1]); printf("Case #%d: %.4lf ", ++c, ans / d / Pi); } return 0; }