zoukankan      html  css  js  c++  java
  • HDU 2814 斐波那契循环节 欧拉降幂

    一看就是欧拉降幂,问题是怎么求$fib(a^b)$,C给的那么小显然还是要找循环节。数据范围出的很那啥..unsigned long long注意用防爆的乘法

    /** @Date    : 2017-09-25 15:17:05
      * @FileName: HDU 2814 斐波那契循环节 欧拉降幂.cpp
      * @Platform: Windows
      * @Author  : Lweleth (SoungEarlf@gmail.com)
      * @Link    : https://github.com/
      * @Version : $Id$
      */
    #include <bits/stdc++.h>
    #define LL unsigned long long
    #define PII pair<int ,int>
    #define MP(x, y) make_pair((x),(y))
    #define fi first
    #define se second
    #define PB(x) push_back((x))
    #define MMG(x) memset((x), -1,sizeof(x))
    #define MMF(x) memset((x),0,sizeof(x))
    #define MMI(x) memset((x), INF, sizeof(x))
    using namespace std;
    
    const int INF = 0x3f3f3f3f;
    const double eps = 1e-8;
    
    
    LL mul(LL a, LL b, LL m) {
        LL ans = 0;
        while (b) {
            if (b & 1) {
                ans = (ans + a) % m;
                b--;
            }
            b >>= 1;
            a = (a + a) % m;
        }
        return ans;
    }
    /*    RERERERERE 精度
    LL mul(LL x, LL y, LL mod)
    {
        return (x * y - (LL)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
    }*/
    /*
    struct Matrix
    {
        LL m[M][M];
    };
    
    Matrix A;
    Matrix I = {1, 0, 0, 1};
    
    Matrix multi(Matrix a, Matrix b, LL MOD)
    {
        Matrix c;
        for(int i = 0; i < M; i++)
        {
            for(int j = 0; j < M; j++)
            {
                c.m[i][j] = 0;
                for(int k = 0; k < M; k++)
                    c.m[i][j] = (c.m[i][j] % MOD + (a.m[i][k] % MOD) * (b.m[k][j] % MOD) % MOD) % MOD;
                c.m[i][j] %= MOD;
            }
        }
        return c;
    }
    
    Matrix power(Matrix a, LL k, LL MOD)
    {
        Matrix ans = I, p = a;
        while(k)
        {
            if(k & 1)
            {
                ans = multi(ans, p, MOD);
                k--;
            }
            k >>= 1;
            p = multi(p, p, MOD);
        }
        return ans;
    }
    
    LL gcd(LL a, LL b)
    {
        return b ? gcd(b, a % b) : a;
    }
    
    const int N = 400005;
    const int NN = 5005;
    
    LL num[NN], pri[NN];
    LL fac[NN];
    int cnt, c;
    
    bool prime[N];
    int p[N];
    int k;
    
    void isprime()
    {
        k = 0;
        memset(prime, true, sizeof(prime));
        for(int i = 2; i < N; i++)
        {
            if(prime[i])
            {
                p[k++] = i;
                for(int j = i + i; j < N; j += i)
                    prime[j] = false;
            }
        }
    }
    
    LL fpow(LL a, LL b, LL m)
    {
        LL ans = 1;
        a %= m;
        while(b)
        {
            if(b & 1)
            {
                ans = mul(ans,  a , m);
                b--;
            }
            b >>= 1;
            a = mul(a , a , m);
        }
        return ans;
    }
    
    LL legendre(LL a, LL p)
    {
        if(fpow(a, (p - 1) >> 1, p) == 1)
            return 1;
        else return -1;
    }
    
    void Solve(LL n, LL pri[], LL num[])
    {
        cnt = 0;
        LL t = (LL)sqrt(1.0 * n);
        for(int i = 0; p[i] <= t; i++)
        {
            if(n % p[i] == 0)
            {
                int a = 0;
                pri[cnt] = p[i];
                while(n % p[i] == 0)
                {
                    a++;
                    n /= p[i];
                }
                num[cnt] = a;
                cnt++;
            }
        }
        if(n > 1)
        {
            pri[cnt] = n;
            num[cnt] = 1;
            cnt++;
        }
    }
    
    void Work(LL n)
    {
        c = 0;
        LL t = (LL)sqrt(1.0 * n);
        for(int i = 1; i <= t; i++)
        {
            if(n % i == 0)
            {
                if(i * i == n) fac[c++] = i;
                else
                {
                    fac[c++] = i;
                    fac[c++] = n / i;
                }
            }
        }
    }
    
    LL get_loop(LL n)
    {
        Solve(n, pri, num);
        LL ans = 1;
        for(int i = 0; i < cnt; i++)
        {
            LL record = 1;
            if(pri[i] == 2)
                record = 3;
            else if(pri[i] == 3)
                record = 8;
            else if(pri[i] == 5)
                record = 20;
            else
            {
                if(legendre(5, pri[i]) == 1)
                    Work(pri[i] - 1);
                else
                    Work(2 * (pri[i] + 1));
                sort(fac, fac + c);
                for(int k = 0; k < c; k++)
                {
                    Matrix a = power(A, fac[k] - 1, pri[i]);
                    LL x = (a.m[0][0] % pri[i] + a.m[0][1] % pri[i]) % pri[i];
                    LL y = (a.m[1][0] % pri[i] + a.m[1][1] % pri[i]) % pri[i];
                    if(x == 1 && y == 0)
                    {
                        record = fac[k];
                        break;
                    }
                }
            }
            for(int k = 1; k < num[i]; k++)
                record *= pri[i];
            ans = ans / gcd(ans, record) * record;
        }
        return ans;
    }
    
    LL fib[5005];
    
    void Init()
    {
        A.m[0][0] = 1;
        A.m[0][1] = 1;
        A.m[1][0] = 1;
        A.m[1][1] = 0;
        fib[0] = 0;
        fib[1] = 1;
        for(int i = 2; i < 5005; i++)
            fib[i] = fib[i - 1] + fib[i - 2];
    }*///会爆ULL C比较小300 不如直接求
    LL fib[5500];
    
    LL get_loop(LL n)
    {
        LL lp = -1;
        fib[0] = 0, fib[1] = 1;
        for(int i = 2; i < 2010; i++)
        {
            fib[i] = (fib[i - 1] % n + fib[i - 2] % n) % n;
            if(fib[i] == 1 && fib[i - 1] == 0)
                return lp = i - 1;
        }
        return lp;
    }
    LL fpow(LL a, LL n, LL mod)
    {
        LL res = 1;
        a %= mod;
        while(n)
        {
            if(n & 1)
                res = mul(res, a, mod);
            a = mul(a, a, mod);
            n >>= 1;
        }
        return res;
    }
    
    int get_phi(int x)
    {
        int ans = x;
        for (int i = 2; i * i <= x; i++)
        {
            if (x % i == 0)
            {
                while (x % i == 0)
                    x /= i;
                ans = ans - ans / i;
            }
        }
        if (x > 1)
            ans = ans - ans / x;
        return ans;
    }
    
    int main()
    {
        LL n;
        //Init();
        //isprime();
        int T;
        cin >> T;
        int icas = 0;
        while(T--)
        {
            LL a, b, n, C;
            scanf("%llu%llu%llu%llu", &a, &b, &n, &C);
            if(C == 1)
            {
                printf("Case %d: 0
    ", ++icas);
                continue;
            }
            int lp1 = get_loop(C);
            LL e1 = fpow(a, b, lp1);
            LL ans1 = fib[e1] % C;
    
            LL phi = get_phi(C);
            int lp2 = get_loop(phi);
            LL e2 = fpow(a, b, lp2);
            LL ans2 = fpow(fib[e2] % phi, n - 1, phi) + phi;
    
            LL ans = fpow(ans1, ans2, C);
            printf("Case %d: %llu
    ", ++icas, ans);
    
        }
        return 0;
    }
    
  • 相关阅读:
    oracle中varchar2和nvarchar2的区别
    Hbuilder与夜神连接
    BUILD 2015: Visual Studio对GitHub的支持
    Visual Studio Developer Assistant 3月新功能展示
    Visual Studio 发布新版API智能提示
    微软发布手机版 Sample Browser。7000多示例代码一手掌握
    微软 PowerShell Script Explorer 满血复活,正式发布
    IBM的“认知计算时代”
    最新 Windows 10 应用项目模板发布
    Windows 10四大版本区别详解:家庭版, 专业版, 企业版和教育版
  • 原文地址:https://www.cnblogs.com/Yumesenya/p/7599690.html
Copyright © 2011-2022 走看看