zoukankan      html  css  js  c++  java
  • 【Ural1277】 Cops and Thieves 无向图点连通度问题

    1277. Cops and Thieves

    Time limit: 1.0 second
    Memory limit: 64 MB
    The Galaxy Police (Galaxpol) found out that a notorious gang of thieves has plans for stealing an extremely valuable exhibit from the Earth Planetary Museum — an ancient microprocessor. The police chiefs decided to intercept the criminals on the way from their refuge to the museum. A problem arose while planning the police operation: would it be possible for the Galaxpol staff to control all the possible routes of the criminals?
    The galaxy transport system is designed as follows. Each planet has a transport station that is connected to some of the other stations via two-way teleportation channels. Transport stations vary in their sizes, so different numbers of policemen may be required to take control over different stations. In order not to upset the operation, it was decided to leave the planets that are next to the museum or the refuge without any police control.
    Help the Galaxpol to place their staff at the stations in order to block all possible routes of the thieves.

    Input

    The first line of the input contains a single integer 0 < K ≤ 10000 — the number of policemen engaged to control the stations.
    The second line has four integers: NMS and F delimited with white-space character.
    N is the number of stations in the galaxy (the stations are numbered from 1 to N); 2 < N ≤ 100.
    M is the number of teleportation channels; 1 < M ≤ 10000.
    S is the number of the planet (and the station) where the museum is; 1 ≤ S ≤ N.
    F is the number of the planet (and the station) where the thieves’ refuge is; 1 ≤ F ≤ N.
    The next line contains N integers (x1, …, xN) separated with white-space character — the number of policemen required to control each of the stations (∑i=1Nxi ≤ 10000).
    Then M lines follow that describe the teleportation channels. Each of these lines contains a pair of space-delimited integers — the numbers of stations being connected by a channel. The channel system is designed so that it is possible to reach any station from any other one (probably it would require several channel transitions).

    Output

    Write “YES” if it is possible to block all the possible routes within given limitations, and “NO” otherwise.

    Samples

    inputoutput
    10
    5 5 1 5
    1 6 6 11 1
    1 2
    1 3
    2 4
    3 4
    4 5
    
    NO
    
    10
    5 5 1 5
    1 4 4 11 1
    1 2
    1 3
    2 4
    3 4
    4 5
    
    YES
    

    题意大概是:封锁每一个点需要一个最少人数Ri,选择封锁几个点使得S,T的所有道路都被封锁.判断封锁需要的人数是否满足<=k

    题解:

    每一个点拆成两个点并建边(i,i+n,Ri),保证每个点只被经过一次。

    然后就是把每一条边(i,j)拆成(i+n,j,INF)和(j+n,i,INF);

    然后最小割就是最少人数 与k对比即可。

    注意特判S,T在同一点时的情况。

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 #include<cmath>
     6 using namespace std;
     7 const int N=305,INF=1999999999;
     8 int gi(){
     9     int str=0;char ch=getchar();
    10     while(ch>'9'||ch<'0')ch=getchar();
    11     while(ch>='0' && ch<='9')str=str*10+ch-'0',ch=getchar();
    12     return str;
    13 }
    14 int head[N],q[N],dep[N],num=1,S,T;
    15 struct Lin{
    16     int next,to,dis;
    17 }a[N*N];
    18 void init(int x,int y,int z){
    19     a[++num].next=head[x];
    20     a[num].to=y;
    21     a[num].dis=z;
    22     head[x]=num;
    23     a[++num].next=head[y];
    24     a[num].to=x;
    25     a[num].dis=0;
    26     head[y]=num;
    27 }
    28 bool bfs()
    29 {
    30     memset(dep,0,sizeof(dep));
    31     int x,u,t=0,sum=1;dep[S]=1;q[1]=S;
    32     while(t!=sum)
    33     {
    34         x=q[++t];
    35         for(int i=head[x];i;i=a[i].next){
    36             u=a[i].to;
    37             if(a[i].dis<=0 || dep[u])continue;
    38             dep[u]=dep[x]+1;q[++sum]=u;
    39         }
    40     }
    41     return dep[T];
    42 }
    43 int dfs(int x,int flow)
    44 {
    45     if(x==T || !flow)return flow;
    46     int u,sum=0,tmp;
    47     for(int i=head[x];i;i=a[i].next){
    48         u=a[i].to;
    49         if(dep[u]!=dep[x]+1 || a[i].dis<=0)continue;
    50         tmp=dfs(u,min(flow,a[i].dis));
    51         a[i].dis-=tmp;a[i^1].dis+=tmp;
    52         sum+=tmp;flow-=tmp;
    53         if(!flow)break;
    54     }
    55     return sum;
    56 }
    57 int maxflow(){
    58     int tmp,tot=0;
    59     while(bfs()){
    60         tmp=dfs(S,INF);
    61         while(tmp)tot+=tmp,tmp=dfs(S,INF);
    62     }
    63     return tot;
    64 }
    65 int main()
    66 {
    67     int k=gi(),x,y;
    68     int n=gi(),m=gi();S=gi();T=gi();
    69     if(S==T){
    70         printf("NO
    ");
    71         return 0;
    72     }
    73     S+=n;
    74     for(int i=1;i<=n;i++){
    75         x=gi();
    76         init(i,i+n,x);
    77     }
    78     for(int i=1;i<=m;i++){
    79         x=gi();y=gi();
    80         init(x+n,y,INF);init(y+n,x,INF);
    81     }
    82     int pd=maxflow();
    83     if(pd<=k)printf("YES");
    84     else printf("NO");
    85     return 0;                    
    86 }
  • 相关阅读:
    cocos2dx 2.14使用UUID
    cocos2dx游戏项目总结(持续更新)
    window mac iPhone 三种比较相似的字体
    【luogu P4762】字符串合成 / Virus synthesis(PAM)(DP)
    【luogu P7796】图书管理员 / POLICE(并查集)(树状数组)
    【luogu P5494】【模板】线段树分裂(线段树合并)(线段树分裂)
    【luogu P2595】多米诺骨牌(插头DP)(容斥)
    送分大水题(高维前缀和)(高维差分)
    【luogu P6880】Bus / 奥运公交 / オリンピックバス(最短路)
    【luogu P1879】Corn Fields G / 玉米田++ / 玉米田(加加强版)(状压DP)(轮廓线DP)
  • 原文地址:https://www.cnblogs.com/Yuzao/p/6861273.html
Copyright © 2011-2022 走看看