zoukankan      html  css  js  c++  java
  • HDU 3507 Print Article

    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5 5 9 5 7 5
     
    Sample Output
    230
     
    题解:
    斜率优化dp板子题.单调队列维护 x满足递增 非常好写
    一个结论:满足条件的点一定在一个凸包的底端,所以我们维护凸包底端的点即可
     1 #include <algorithm>
     2 #include <iostream>
     3 #include <cstdlib>
     4 #include <cstring>
     5 #include <cstdio>
     6 #include <cmath>
     7 using namespace std;
     8 typedef long long ll;
     9 const int N=500005;
    10 int gi(){
    11     int str=0;char ch=getchar();
    12     while(ch>'9' || ch<'0')ch=getchar();
    13     while(ch>='0' && ch<='9')str=(str<<1)+(str<<3)+ch-48,ch=getchar();
    14     return str;
    15 }
    16 int n,m,a[N],q[N];ll sum[N],f[N];
    17 ll fy(int i,int j){
    18     return sum[i]*sum[i]+f[i]-sum[j]*sum[j]-f[j];
    19 }
    20 ll fx(int i,int j){
    21     return ((sum[i]-sum[j])<<1);
    22 } 
    23 void work(){
    24     int l=1,r=1,j,k;
    25     q[1]=0;
    26     for(int i=1;i<=n;i++)a[i]=gi(),sum[i]=sum[i-1]+a[i];
    27     for(int i=1;i<=n;i++){
    28         while(l<=r-1){
    29             j=q[l];k=q[l+1];
    30             if(fy(j,k)>=sum[i]*fx(j,k))l++;
    31             else break;
    32         }
    33         f[i]=f[q[l]]+m+(sum[i]-sum[q[l]])*(sum[i]-sum[q[l]]);
    34         while(l<=r-1){
    35             j=q[r];k=q[r-1];
    36             if(fy(i,j)*fx(j,k)<=fy(j,k)*fx(i,j))r--;
    37             else break;
    38         }
    39         q[++r]=i;
    40     }
    41     printf("%lld
    ",f[n]);
    42 }
    43 int main()
    44 {
    45     while(~scanf("%d%d",&n,&m))
    46     work();
    47     return 0;
    48 }
  • 相关阅读:
    托管和使用WCF服务:WAS(Windows激活服务)
    突发的灵感
    C# 常见图像处理效果
    C# WinForm TreeView 递归选择父节点和子节点
    C# WinForm ComboBox 枚举 选定值
    C# Socket 异步 UDP
    C# WinForm 判断窗体控件是否修改过
    C# 线程同步 信号量 Semaphore
    C# WinForm ComboBox Items 选定值
    C# WinForm ComboBox 自定义数据项 (ComboBoxItem )
  • 原文地址:https://www.cnblogs.com/Yuzao/p/7237135.html
Copyright © 2011-2022 走看看