zoukankan      html  css  js  c++  java
  • HDU 3507 Print Article

    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5 5 9 5 7 5
     
    Sample Output
    230
     
    题解:
    斜率优化dp板子题.单调队列维护 x满足递增 非常好写
    一个结论:满足条件的点一定在一个凸包的底端,所以我们维护凸包底端的点即可
     1 #include <algorithm>
     2 #include <iostream>
     3 #include <cstdlib>
     4 #include <cstring>
     5 #include <cstdio>
     6 #include <cmath>
     7 using namespace std;
     8 typedef long long ll;
     9 const int N=500005;
    10 int gi(){
    11     int str=0;char ch=getchar();
    12     while(ch>'9' || ch<'0')ch=getchar();
    13     while(ch>='0' && ch<='9')str=(str<<1)+(str<<3)+ch-48,ch=getchar();
    14     return str;
    15 }
    16 int n,m,a[N],q[N];ll sum[N],f[N];
    17 ll fy(int i,int j){
    18     return sum[i]*sum[i]+f[i]-sum[j]*sum[j]-f[j];
    19 }
    20 ll fx(int i,int j){
    21     return ((sum[i]-sum[j])<<1);
    22 } 
    23 void work(){
    24     int l=1,r=1,j,k;
    25     q[1]=0;
    26     for(int i=1;i<=n;i++)a[i]=gi(),sum[i]=sum[i-1]+a[i];
    27     for(int i=1;i<=n;i++){
    28         while(l<=r-1){
    29             j=q[l];k=q[l+1];
    30             if(fy(j,k)>=sum[i]*fx(j,k))l++;
    31             else break;
    32         }
    33         f[i]=f[q[l]]+m+(sum[i]-sum[q[l]])*(sum[i]-sum[q[l]]);
    34         while(l<=r-1){
    35             j=q[r];k=q[r-1];
    36             if(fy(i,j)*fx(j,k)<=fy(j,k)*fx(i,j))r--;
    37             else break;
    38         }
    39         q[++r]=i;
    40     }
    41     printf("%lld
    ",f[n]);
    42 }
    43 int main()
    44 {
    45     while(~scanf("%d%d",&n,&m))
    46     work();
    47     return 0;
    48 }
  • 相关阅读:
    js optional chaining operator
    Linux Bash Script conditions
    Linux Bash Script loop
    js Nullish Coalescing Operator
    js sort tricks All In One
    React Portal All In One
    最小生成树&&次小生成树
    链式前向星实现以及它的遍历
    [2015.11.8|9图论]解题代码集合
    最短路算法及其延伸
  • 原文地址:https://www.cnblogs.com/Yuzao/p/7237135.html
Copyright © 2011-2022 走看看