tarjan求lca
-
这种算法本质上是用并查集对向上标记法的优化,是离线算法,即一次性读入所有询问,统一计算,统一输出。
时间复杂度(O(n+m))v[]
进行标记
(v[x]doteq 0) --> x节点未访问过
(v[x]doteq 1) --> x节点已经访问,但未回溯
(v[x]doteq 2) --> x节点已经访问并回溯
-
code
#include <cstdio> #include <vector> #include <algorithm> using namespace std; const int N = 1e5+5; struct side { int t, d, next; }e[N<<1]; int head[N], tot; void add(int x, int y, int z) { e[++tot].next = head[x]; head[x] = tot; e[tot].t = y, e[tot].d = z; } int n, m, Q, d[N], f[N], v[N], ans[N]; vector<int> q[N], h[N]; int found(int x) { return x == f[x] ? x : (f[x] = found(f[x])); } void Dfs(int x) { v[x] = 1; for (int i = head[x]; i; i = e[i].next) { int y = e[i].t; if (v[y]) continue; d[y] = d[x] + e[i].d; Dfs(y); f[y] = x; } for (int i = 0; i < q[x].size(); i++) { int y = q[x][i], id = h[x][i]; if (v[y] != 2) continue; ans[id] = min(ans[id], d[x] + d[y] - 2*d[found(y)]); } v[x] = 2; } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) f[i] = i; while (m--) { int x, y, z; scanf("%d%d%d", &x, &y, &z); add(x, y, z); add(y, x, z); } scanf("%d", &Q); for (int i = 1; i <= Q; i++) { int x, y; scanf("%d%d", &x, &y); if (x == y) continue; ans[i] = 1 << 30; q[x].push_back(y), h[x].push_back(i); q[y].push_back(x), h[y].push_back(i); } Dfs(1); for (int i = 1; i <= Q; i++) printf("%d ", ans[i]); return 0; }
倍增求Lca
-
f[x][k]表示从x向根节点走(2^k)步到达的节点
d[x]表示树的深度
预处理时间复杂度为(O(nlog n)),每次询问时间复杂度为(O(log n))code
int d[N], f[N][21]; void dfs(int x, int fa) { f[x][0] = fa; d[x] = d[fa] + 1; for (int i = 1; i <= 20; i++) f[x][i] = f[f[x][i-1]][i-1]; for (int i = head[x]; i; i = e[i].next) if (e[i].t != fa) dfs(e[i].t, x); } int found(int x, int l) { int a = 0; while (l) { if (l & 1) x = f[x][a]; l >>= 1; a++; } return x; } int lca(int x, int y) { if (d[x] > d[y]) swap(x, y); y = found(y, d[y] - d[x]); if (x == y) return x; for (int i = 20; i >= 0; i--) if (f[x][i] != f[y][i]) x = f[x][i], y = f[y][i]; return f[x][0]; }
树链剖分求lca
- 轻重链剖分
code
//树链剖分 #include <cstdio> using namespace std; const int N = 5e5+5; struct Side { int t, next; }e[N<<1]; int head[N], tot; void Add(int x, int y) { e[++tot] = (Side){y, head[x]}; head[x] = tot; } int siz[N], f[N], son[N], d[N], top[N]; void Dfs1(int x) { siz[x] = 1; d[x] = d[f[x]] + 1; for (int i = head[x]; i; i = e[i].next) { int y = e[i].t; if (y == f[x]) continue; f[y] = x; Dfs1(y); siz[x] += siz[y]; if (!son[x] || siz[son[x]] < siz[y]) son[x] = y; } } void Dfs2(int x, int tp) { top[x] = tp; if (!son[x]) return; Dfs2(son[x], tp); for (int i = head[x]; i; i = e[i].next) { int y = e[i].t; if (y == f[x] || y == son[x]) continue; Dfs2(y, y); } } int Lca(int x, int y) { while (top[x] != top[y]) d[top[x]] > d[top[y]] ? x = f[top[x]] : y = f[top[y]]; return d[x] < d[y] ? x : y; } int n, m, s; int main() { scanf("%d%d%d", &n, &m, &s); for (int i = 1; i < n; i++) { int x, y; scanf("%d%d", &x, &y); Add(x, y); Add(y, x); } Dfs1(s); Dfs2(s, s); while (m--) { int x, y; scanf("%d%d", &x, &y); printf("%d ", Lca(x, y)); } return 0; }