zoukankan      html  css  js  c++  java
  • 求最近公共祖先LCA三种方法

    tarjan求lca

    • 这种算法本质上是用并查集对向上标记法的优化,是离线算法,即一次性读入所有询问,统一计算,统一输出。
      时间复杂度(O(n+m))

      • v[]进行标记
        (v[x]doteq 0) --> x节点未访问过
        (v[x]doteq 1) --> x节点已经访问,但未回溯
        (v[x]doteq 2) --> x节点已经访问并回溯
    • code

      #include <cstdio>
      #include <vector>
      #include <algorithm>
      using namespace std;
      const int N = 1e5+5;
      struct side {
          int t, d, next;
      }e[N<<1];
      int head[N], tot;
      void add(int x, int y, int z) {
          e[++tot].next = head[x];
          head[x] = tot;
          e[tot].t = y, e[tot].d = z;
      }
      int n, m, Q, d[N], f[N], v[N], ans[N];
      vector<int> q[N], h[N];
      int found(int x) {
          return x == f[x] ? x : (f[x] = found(f[x]));
      }
      void Dfs(int x) {
          v[x] = 1;
          for (int i = head[x]; i; i = e[i].next) {
              int y = e[i].t;
              if (v[y]) continue;
              d[y] = d[x] + e[i].d;
              Dfs(y);
              f[y] = x;
          }
          for (int i = 0; i < q[x].size(); i++) {
              int y = q[x][i], id = h[x][i];
              if (v[y] != 2) continue;
              ans[id] = min(ans[id], d[x] + d[y] - 2*d[found(y)]);
          }
          v[x] = 2;
      }
      int main() {
          scanf("%d%d", &n, &m);
          for (int i = 1; i <= n; i++) f[i] = i;
          while (m--) {
              int x, y, z;
              scanf("%d%d%d", &x, &y, &z);
              add(x, y, z); add(y, x, z);
          }
          scanf("%d", &Q);
          for (int i = 1; i <= Q; i++) {
              int x, y;
              scanf("%d%d", &x, &y);
              if (x == y) continue;
              ans[i] = 1 << 30;
              q[x].push_back(y), h[x].push_back(i);
              q[y].push_back(x), h[y].push_back(i);
          }
          Dfs(1);
          for (int i = 1; i <= Q; i++)
              printf("%d
      ", ans[i]);
          return 0;
      }
      

    倍增求Lca

    • f[x][k]表示从x向根节点走(2^k)步到达的节点
      d[x]表示树的深度
      预处理时间复杂度为(O(nlog n)),每次询问时间复杂度为(O(log n))

      • code
        int d[N], f[N][21];
        void dfs(int x, int fa) {
            f[x][0] = fa;
            d[x] = d[fa] + 1;
            for (int i = 1; i <= 20; i++)
                f[x][i] = f[f[x][i-1]][i-1];
            for (int i = head[x]; i; i = e[i].next) 
                if (e[i].t != fa) dfs(e[i].t, x);
        }
        int found(int x, int l) {
            int a = 0;
            while (l) {
                if (l & 1) x = f[x][a];
                l >>= 1; a++;
            }
            return x;
        }
        int lca(int x, int y) {
            if (d[x] > d[y]) swap(x, y);
            y = found(y, d[y] - d[x]);
            if (x == y) return x;
            for (int i = 20; i >= 0; i--)
                if (f[x][i] != f[y][i])
                    x = f[x][i], y = f[y][i];
            return f[x][0];
        }
        

    推荐

    树链剖分求lca

    • 轻重链剖分
      • code
        //树链剖分
        #include <cstdio>
        using namespace std;
        const int N = 5e5+5;
        struct Side {
            int t, next;
        }e[N<<1];
        int head[N], tot;
        void Add(int x, int y) {
            e[++tot] = (Side){y, head[x]};
            head[x] = tot;
        }
        int siz[N], f[N], son[N], d[N], top[N];
        void Dfs1(int x) {
            siz[x] = 1;
            d[x] = d[f[x]] + 1;
            for (int i = head[x]; i; i = e[i].next) {
                int y = e[i].t;
                if (y == f[x]) continue;
                f[y] = x;
                Dfs1(y);
                siz[x] += siz[y];
                if (!son[x] || siz[son[x]] < siz[y])
                    son[x] = y;
            }
        }
        void Dfs2(int x, int tp) {
            top[x] = tp;
            if (!son[x]) return;
            Dfs2(son[x], tp);
            for (int i = head[x]; i; i = e[i].next) {
                int y = e[i].t;
                if (y == f[x] || y == son[x]) continue;
                Dfs2(y, y);
            }
        }
        int Lca(int x, int y) {
            while (top[x] != top[y])
                d[top[x]] > d[top[y]] ? x = f[top[x]] : y = f[top[y]];
            return d[x] < d[y] ? x : y;
        }
        int n, m, s;
        int main() {
            scanf("%d%d%d", &n, &m, &s);
            for (int i = 1; i < n; i++) {
                int x, y;
                scanf("%d%d", &x, &y);
                Add(x, y); Add(y, x);
            }
            Dfs1(s); Dfs2(s, s);
            while (m--) {
                int x, y;
                scanf("%d%d", &x, &y);
                printf("%d
        ", Lca(x, y));
            }
            return 0;
        }
        
  • 相关阅读:
    test
    在linux下安装tesseract-ocr
    xpath获取同级节点
    RobotFrameWork系统关键字之断言
    redis
    mybatis
    mysql事务隔离级别
    努力努力再努力
    不同分辨率下,页面如何自适应?
    市场上有多少种分辨率?
  • 原文地址:https://www.cnblogs.com/Z8875/p/13277399.html
Copyright © 2011-2022 走看看