zoukankan      html  css  js  c++  java
  • POJ 3186 Treats for the Cows (动态规划)

    Description

    FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. 

    The treats are interesting for many reasons:
    • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
    • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
    • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
    • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
    Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? 

    The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

    Input

    Line 1: A single integer, N 

    Lines 2..N+1: Line i+1 contains the value of treat v(i)

    Output

    Line 1: The maximum revenue FJ can achieve by selling the treats

    Sample Input

    5
    1
    3
    1
    5
    2

    Sample Output

    43

    题意:
    可以从数组的左右两端拿数字,权值依次上升,求权值乘上数字的和的最大值。
    思路:
    dp[i][j]表示起点为i,终点为j的组数,可以得到的最大值是多少。
    首先枚举长度,再计算该长度所有的dp[i][j]的值。
    代码:
    #include<iostream>
    #include<algorithm>
    #include<vector>
    #include<stack>
    #include<queue>
    #include<map>
    #include<set>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<ctime>
    #define fuck(x) cout<<#x<<" = "<<x<<endl;
    #define ls (t<<1)
    #define rs ((t<<1)+1)
    using namespace std;
    typedef long long ll;
    typedef unsigned long long ull;
    const int maxn = 100086;
    const int inf = 2.1e9;
    const ll Inf = 999999999999999999;
    const int mod = 1000000007;
    const double eps = 1e-6;
    const double pi = acos(-1);
    int num[2048];
    int dp[2048][2048];
    int main()
    {
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++){
            scanf("%d",&num[i]);
        }
        for(int i=1;i<=n;i++){
            dp[i][i]=num[i]*n;
        }
        for(int len=2;len<=n;len++){
            for(int i=1;i<=n;i++){
                int j=i+len-1;
                if(j<=n)dp[i][j]=max(dp[i][j],dp[i][j-1]+num[j]*(n-len+1));
                j=i-len+1;
                if(j>=1)dp[j][i]=max(dp[j][i],dp[j+1][i]+num[j]*(n-len+1));
            }
        }
        printf("%d
    ",dp[1][n]);
        return 0;
    }
    View Code
  • 相关阅读:
    “automation服务器不能创建对象”的问题的解决方案大全
    转载区分C#中的Abstract函数和Virtual函数
    DOS批处理
    数据库设计范式
    java 内存查看工具
    Java内存溢出详解
    Struts2 循环编辑指定次数
    Selenium 使用
    spring security 获取当前用户信息
    由MyEclipse内存不足谈谈JVM内存
  • 原文地址:https://www.cnblogs.com/ZGQblogs/p/10663473.html
Copyright © 2011-2022 走看看