zoukankan      html  css  js  c++  java
  • POJ

    Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

    Input

    The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

    Output

    Output the elements of S modulo m in the same way as A is given.

    Sample Input

    2 2 4
    0 1
    1 1

    Sample Output

    1 2
    2 3

    思路,把矩阵看成一个数字。

    #include<iostream>
    #include<algorithm>
    #include<vector>
    #include<stack>
    #include<queue>
    #include<map>
    #include<set>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<ctime>
    #define fuck(x) cout<<#x<<" = "<<x<<endl;
    #define debug(a,i) cout<<#a<<"["<<i<<"] = "<<a[i]<<endl;
    #define ls (t<<1)
    #define rs ((t<<1)+1)
    using namespace std;
    typedef long long ll;
    typedef unsigned long long ull;
    const int maxn = 100086;
    const int maxm = 100086;
    const int inf = 2.1e9;
    const ll Inf = 999999999999999999;
    //const int mod = 1000000007;
    const double eps = 1e-6;
    const double pi = acos(-1);
    
    int n,k,mod;
    
    struct Matrix{
        int mp[70][70];
    };
    Matrix a;
    
    
    Matrix mul(Matrix a,Matrix b,int n){
        Matrix ans;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                ans.mp[i][j]=0;
                for(int k=1;k<=n;k++){
                    ans.mp[i][j]+=a.mp[i][k]*b.mp[k][j];
                }
                ans.mp[i][j]%=mod;
            }
        }
        return ans;
    }
    
    Matrix q_pow(Matrix a,int b,int n){
        Matrix ans;
        memset(ans.mp,0,sizeof(ans.mp));
        for(int i=1;i<=n;i++){
            ans.mp[i][i]=1;
        }
        while (b){
            if(b&1){
                ans=mul(ans,a,n);
            }
            b>>=1;
            a=mul(a,a,n);
        }
        return ans;
    }
    
    Matrix mul1(Matrix a,Matrix b,int n){
        Matrix ans;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                ans.mp[i][j]=0;
                for(int k=1;k<=n;k++){
                    ans.mp[i][j]+=a.mp[i][k+n]*b.mp[k][j];
                }
                ans.mp[i][j]%=mod;
            }
        }
        return ans;
    }
    
    int main()
    {
        scanf("%d%d%d",&n,&k,&mod);
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                scanf("%d",&a.mp[i][j]);
                a.mp[i][j]%=mod;
            }
        }
        for(int i=1;i<=n;i++){
            a.mp[i][i+n]=1;
            a.mp[i+n][i+n]=1;
        }
        Matrix tmp=q_pow(a,k-1,n*2);
        Matrix b=tmp;
        tmp = mul(tmp,a,n);
        a=mul1(b,a,n);
        for(int i=1;i<=n;i++){
            for(int j=1;j<n;j++){
                printf("%d ",(tmp.mp[i][j]+a.mp[i][j])%mod);
            }
            printf("%d
    ",(tmp.mp[i][n]+a.mp[i][n])%mod);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    mzy git学习,分支以及分支合并(四)
    mzy git学习,删除文件(三)
    mzy git学习,撤销修改(二)
    mzy git学习,初识git(一)
    apche的BeanUtils避免使用!
    eclipse性能调优的一次记录
    Java规范化代码eclipse模板注释
    左倾堆(对两个优先队列合并)
    二叉堆的实现(数组)——c++
    哈夫曼树——c++
  • 原文地址:https://www.cnblogs.com/ZGQblogs/p/10878004.html
Copyright © 2011-2022 走看看