zoukankan      html  css  js  c++  java
  • POJ 3268 Silver Cow Party (Dijkstra)

                            Silver Cow Party
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions:28457   Accepted: 12928

    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line 1: Three space-separated integers, respectively: NM, and X 
    Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Titime units to traverse.

    Output

    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3

    Sample Output

    10

    Hint

    Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.
     
    题意:
    单向图,每个农场都有一头牛,牛去开party,每个牛都要耗费一定的时间在路上,问花费最多的牛,要耗费多少时间
    思路:
    建立反向图,DIjkstra。
    我还没有vector的Dijkstra的板子,就把这个当板子吧。
    代码
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<vector>
     5 #include<queue>
     6 using namespace std;
     7 int n,m,x;
     8 const int inf = 1e9;
     9 struct node
    10 {
    11     int num;
    12     int dis;
    13 
    14     bool operator < (const node x)const
    15     {
    16         return x.dis<dis;
    17     }
    18 };
    19 vector<int>u[1024],w[1024];
    20 vector<int>ux[1024],wx[1024];
    21 int dis[1024],dis2[1024];
    22 bool book[1024];
    23 void dijkstra1()
    24 {
    25     fill(dis,dis+n+5,inf);
    26     priority_queue<node>q;
    27     memset(book,0,sizeof(book));
    28     q.push(node{x,0});
    29     dis[x]=0;
    30     node exa;
    31     while(!q.empty()){
    32         exa=q.top();q.pop();
    33         int t=exa.num;
    34         if(book[t]){continue;}
    35         book[t]=true;
    36         int siz=u[exa.num].size();
    37         for(int i=0;i<siz;i++){
    38             if(!book[u[t][i]]&&dis[u[t][i]]>dis[t]+w[t][i]){
    39                 dis[u[t][i]]=dis[t]+w[t][i];
    40                 q.push(node{u[t][i],dis[u[t][i]]});
    41             }
    42         }
    43     }
    44 }
    45 
    46 void dijkstra2()
    47 {
    48     fill(dis2,dis2+n+5,inf);
    49     priority_queue<node>q;
    50     memset(book,0,sizeof(book));
    51     q.push(node{x,0});
    52     dis2[x]=0;
    53     node exa;
    54     while(!q.empty()){
    55         exa=q.top();q.pop();
    56         int t=exa.num;
    57         if(book[t]){continue;}
    58         book[t]=true;
    59         int siz=ux[exa.num].size();
    60         for(int i=0;i<siz;i++){
    61             if(!book[ux[t][i]]&&dis2[ux[t][i]]>dis2[t]+wx[t][i]){
    62                 dis2[ux[t][i]]=dis2[t]+wx[t][i];
    63                 q.push(node{ux[t][i],dis2[ux[t][i]]});
    64             }
    65         }
    66     }
    67 }
    68 
    69 int main()
    70 {
    71     scanf("%d%d%d",&n,&m,&x);
    72     int q,l,e;
    73     for(int i=1;i<=m;i++){
    74         scanf("%d%d%d",&q,&l,&e);
    75         u[q].push_back(l);
    76         w[q].push_back(e);
    77         ux[l].push_back(q);
    78         wx[l].push_back(e);
    79     }
    80     int ans=0;
    81     dijkstra1();
    82     dijkstra2();
    83     for(int i=1;i<=n;i++){
    84         ans=max(ans,dis[i]+dis2[i]);
    85     }
    86     printf("%d
    ",ans);
    87 }
  • 相关阅读:
    Ceph的参数mon_osd_down_out_subtree_limit细解
    java:警告:[unchecked] 对作为普通类型 java.util.HashMap 的成员的put(K,V) 的调用未经检查
    Java 原始类型JComboBox的成员JComboBox(E())的调用 未经过检查
    Android draw Rect 坐标图示
    不用快捷键就能使用Eclipse的自动完成功能
    Java 窗体居中 通用代码
    Java文件复制删除操作合集
    Java Toolkit类用法
    DEVEXPRESS 破解方法
    如何使用Java执行cmd命令
  • 原文地址:https://www.cnblogs.com/ZGQblogs/p/9392456.html
Copyright © 2011-2022 走看看