zoukankan      html  css  js  c++  java
  • 51nod1584加权约数和

    题目大意:

    求:

    [sum_{i-1}^nsum_{j=1}^nmax(i,j)sigma(i*j) ]

    题解

    对于这个(max),套路的把它转化成:

    [2*sum_{i=1}^nsum_{j=1}^ii*sigma(i*j)-sum_{i=1}^n i*sigma(i*i) ]

    对于前面的部分,我们可以:

    [sum_{i=1}^{n}sum_{j=1}^iisum_{a|i}sum_{b|j}a*frac{j}{b}[(a,b)==1] ]

    [sum_{i=1}^{n}isum_{j=i}^nsum_{a|i}sum_{b|j}a*frac{j}{b}sum_{d|(i,j)}mu(d) ]

    [sum_{d=1}^nmu(d)sum_{i=1}^{frac{n}{d}}i*dsum_{a|i}a*dsum_{j=1}^{i}sum_{b|j}frac{j}{b} ]

    [sum_{d=1}^nmu(d)d^2sum_{i=1}^{frac{n}{d}}isum_{a|i}asum_{j=1}^isum_{b|j}frac{j}{b} ]

    [sum_{d=1}^nmu(d)d^2sum_{i=1}^{frac{n}{d}}g_i ]

    [sum_{D=1}^nsum_{d|D}mu(d)d^2G_{D/d} ]

    [g_n=n*sigma_n*sum_{i=1}^n sigma_i ]

    这个(g)数组就可以线性预处理了。

    后面的部分可以线性筛,姿势++。

    代码

    #include<bits/stdc++.h>
    #define N 1000009
    using namespace std;
    typedef long long ll;
    const int maxn=1000000;
    const int mod=1000000007;
    bool vis[N];
    int prime[N];
    ll mu[N],md[N],mdp[N],ans[N],g[N],sum[N],f[N];
    ll sig[N],sig2[N];
    inline ll rd(){
    	ll x=0;char c=getchar();bool f=0;
    	while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
    	while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
    	return f?-x:x;
    }
    inline void MOD(ll &x){x=x>=mod?x-mod:x;}
    inline void prework(int n){
    	sig[1]=mu[1]=sig2[1]=md[1]=mdp[1]=1;
    	for(int i=2;i<=n;++i){
    		//cout<<i<<" "<<md[i]<<" "<<mdp[i]<<endl;
    		if(!vis[i]){
    			prime[++prime[0]]=i;
    			md[i]=mdp[i]=i;
    			mu[i]=mod-1;
    			sig[i]=i+1;
    			sig2[i]=(1ll*i*i%mod+i+1)%mod;
    		}
    		for(int j=1;j<=prime[0]&&(i*prime[j])<=n;++j){
    			vis[i*prime[j]]=1;
    			if(i%prime[j]==0){
    				mu[i*prime[j]]=0;
    				md[i*prime[j]]=prime[j];
    				mdp[i*prime[j]]=mdp[i]*prime[j];
    				sig[i*prime[j]]=(sig[i]+1ll*prime[j]*mdp[i]%mod*sig[i/mdp[i]]%mod)%mod;
                    sig2[i*prime[j]]=sig2[i]+(1ll*mdp[i]*mdp[i]%mod*md[i]%mod+
                    1ll*mdp[i]*mdp[i]%mod*md[i]%mod*md[i]%mod)*sig2[i/mdp[i]]%mod;
                    sig2[i*prime[j]]%=mod;
    				break;
    			}
    			mu[i*prime[j]]=mod-mu[i];
                sig[i*prime[j]]=sig[i]*sig[prime[j]]%mod;
                md[i*prime[j]]=mdp[i*prime[j]]=prime[j];
                sig2[i*prime[j]]=sig2[i]*sig2[prime[j]]%mod;
    		}
    	}
    	for(int i=1;i<=n;++i)MOD(sum[i]=sum[i-1]+sig[i]);
    	for(int i=1;i<=n;++i){
            g[i]=1ll*sig[i]*i%mod*sum[i]%mod;
            MOD(sig2[i]=sig2[i-1]+sig2[i]*i%mod);
            for(int j=i;j<=n;j+=i)MOD(f[j]+=g[i]*mu[j/i]%mod*(j/i)%mod*(j/i)%mod);
            MOD(f[i]+=f[i-1]);
    		ans[i]=(f[i]*2-sig2[i]+mod)%mod;
    	}
    }
    int main(){
    	prework(maxn);
    	int T=rd(),ct=0;
    	while(T--){
          int x=rd();ct++;
          printf("Case #%d: %lld
    ",ct,ans[x]);
    	}
    	return 0;
    }
    
  • 相关阅读:
    transition过渡效果
    transform旋转变换效果
    让字体在div容器中垂直居中
    背景图片浮动居中
    解决图片浮动调节不了的问题(使用vertical-align属性)
    box-shadow向元素添加阴影效果
    hr中间插入字体
    codeforces 659D . Bicycle Race 几何
    codeforces 659E . New Reform 强连通
    codeforces 552 E. Vanya and Brackets 表达式求值
  • 原文地址:https://www.cnblogs.com/ZH-comld/p/11031526.html
Copyright © 2011-2022 走看看