zoukankan      html  css  js  c++  java
  • HDU1506(单调栈或者DP) 分类: 数据结构 2015-07-07 23:23 2人阅读 评论(0) 收藏

    Largest Rectangle in a Histogram

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 13997    Accepted Submission(s): 3982


    Problem Description
    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.
     

    Input
    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.
     

    Output
    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.
     

    Sample Input
    7 2 1 4 5 1 3 3 4 1000 1000 1000 1000 0
     

    Sample Output
    8 4000
     

    Source

    Difficulty:单调栈:栈内的元素,按照某种方式排序下(单调递增或者单调递减) 如果新入栈的元素破坏了单调性,就弹出栈内元素,直到满足单调性
     单调栈模板:

    1 int top=0,s[maxn];
    2 for(int i=1;i<=n;i++)
    3 {
    4     while(top&&h[s[top]]>=h[i])//根据改变大于号小于号来改变单调性。
    5     {
    6         --top;//出栈,一般在while这重循环里添加东西去满足题意。
    7     }
    8     s[++top]=i; //入栈
    9 }

    单调栈解法:

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 #include<cstdlib>
     5 #include<algorithm>
     6 using namespace std;
     7 long long h[100006];
     8 int  s[100006];
     9 long long area[100006];
    10 int L[100006];
    11 int R[100006];
    12 int n;
    13 long long ans;
    14 bool cmp( int a, int c)
    15 {
    16     return  a>c;
    17 
    18 }
    19 int main()
    20 {
    21     while(~scanf("%d",&n)&&n)
    22     {
    23         int top=0;
    24         for(int i=1;i<=n;i++)
    25         {
    26             scanf("%lld",&h[i]);
    27             while(top&&h[s[top]]>=h[i])
    28                 --top;
    29             L[i]=(top==0?1:s[top]+1);
    30             s[++top]=i;
    31         }
    32         top=0;
    33         for(int i=n;i>=1;i--)
    34         {
    35             while(top&&h[s[top]]>=h[i])
    36                --top;
    37             R[i]=(top==0?n:s[top]-1);
    38             s[++top]=i;
    39         }
    40         ans=-1;
    41 
    42         for(int i=1;i<=n;i++)
    43         {
    44             area[i]=h[i]*(R[i]-L[i]+1);
    45             if(ans<area[i])
    46                 ans=area[i];
    47 
    48         }
    49             printf("%lld
    ",ans);
    50     }
    51         return 0;
    52 }

    DP解法:

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 #include<algorithm>
     5 using namespace std;
     6 #define maxn 251000+5
     7 long long h[maxn];
     8 int L[maxn];
     9 int R[maxn];
    10 int n,m;
    11 int main()
    12 {
    13     while(~scanf("%d",&n))
    14     {
    15         if(n==0)
    16             break;
    17         for(int i=1;i<=n;i++)
    18         {
    19             scanf("%lld",&h[i]);
    20             R[i]=L[i]=i;
    21         }
    22         h[0]=-1;
    23         for(int i=1;i<=n;i++)
    24         {
    25             while(h[i]<=h[L[i]-1])
    26                 L[i]=L[L[i]-1];
    27         }
    28         h[n+1]=-1;
    29         for(int i=n;i>=1;i--)
    30         {
    31             while(h[i]<=h[R[i]+1])
    32                 R[i]=R[R[i]+1];
    33         }
    34         long long  max1=0;
    35         for(int i=1;i<=n;i++)
    36         {
    37             max1=max(max1,(R[i]-L[i]+1)*h[i]);
    38         }
    39         printf("%lld
    ",max1);
    40     }
    41 
    42     return 0;
    43 }

    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    Vue的响应式
    让html上两个元素在一行显示
    linux的<<命令
    http-only,withCredentials
    axios跨域请求时 withCredentials:true 表示request携带cookie
    异步代码async await阻塞进程的误区——await的是Promise的resolve而不是语句块的执行结束
    理解状态机
    关于express返回值的问题
    axios基本的get/post请求使用方法
    【转】 前端笔记之Vue(四)UI组件库&amp;Vuex&amp;虚拟服务器初识
  • 原文地址:https://www.cnblogs.com/ZP-Better/p/4639598.html
Copyright © 2011-2022 走看看