zoukankan      html  css  js  c++  java
  • 素数筛法

    线性筛更快。

    1.埃氏筛法

    1 int m=sqrt(n+0.5);
    2 memset(vis,0,sizeof(vis));
    3 for(int i=2;i<=m;i++)
    4     if(!vis[i])
    5     for(int j=i*i;j<=n;j+=i)
    6     vis[j]=1;
    Write a program to read in a list of integers and determine whether or not each number is prime. A number, n, is prime if its only divisors are 1 and n. For this problem, the numbers 1 and 2 are not considered primes.
     

    Input

    Each input line contains a single integer. The list of integers is terminated with a number<= 0. You may assume that the input contains at most 250 numbers and each number is less than or equal to 16000.
     

    Output

    The output should consists of one line for every number, where each line first lists the problem number, followed by a colon and space, followed by "yes" or "no".
     

    Sample Input

    1 2 3 4 5 17 0
     

    Sample Output

    1: no 2: no 3: yes 4: no 5: yes 6: yes
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include<cmath>
     6 using namespace std;
     7 int n;
     8 int vis[16005];
     9 void prime()
    10 {
    11     int m=sqrt(16000+0.5);
    12     memset(vis,0,sizeof(vis));
    13     for(int i=2;i<=m;i++)
    14         if(!vis[i])
    15         for(int j=i*i;j<=16000;j+=i)
    16         vis[j]=1;
    17     vis[1]=vis[2]=1;
    18 }
    19 int main()
    20 {
    21     prime();
    22     //printf("%d 123213",vis[4]);
    23     int cnt=0;
    24     while(~scanf("%d",&n))
    25  {
    26     if(n<=0)
    27         break;
    28     printf("%d: ",++cnt);
    29     if(vis[n]==0)
    30         printf("yes
    ");
    31     if(vis[n]==1)
    32         printf("no
    ");
    33  }
    34  return 0;
    35 }
    36 //1
    37 //2
    38 //3
    39 //4
    40 //5
    41 //17
    42 //0

    2.线性筛

     1     memset(vis,false,sizeof(vis));
     2     tot=0;
     3     for(int i=2;i<=maxn;i++)
     4     {
     5         if(!vis[i])
     6           prime1[tot++]=i;
     7         for(int j=0;j<tot;j++)
     8         {
     9             if(i*prime1[j]>maxn)
    10             break;
    11             vis[i*prime1[j]]=true;
    12             if(i%prime1[j]==0)
    13                 break;

    Description

    Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:

    Every even integer, greater than 2, can be expressed as the sum of two primes [1].

    Now your task is to check whether this conjecture holds for integers up to 107.

    Input

    Input starts with an integer T (≤ 300), denoting the number of test cases.

    Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).

    Output

    For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where

    1)      Both a and b are prime

    2)      a + b = n

    3)      a ≤ b

    Sample Input

    2

    6

    4

    Sample Output

    Case 1: 1

    Case 2: 1

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include<cmath>
     6 using namespace std;
     7 #define maxn 10000000
     8 bool vis[10000002];
     9 int prime1[1000020];
    10 int tot;
    11 void prime()
    12 {
    13     memset(vis,false,sizeof(vis));
    14     tot=0;
    15     for(int i=2;i<=maxn;i++)
    16     {
    17         if(!vis[i])
    18           prime1[tot++]=i;
    19         for(int j=0;j<tot;j++)
    20         {
    21             if(i*prime1[j]>maxn)
    22             break;
    23             vis[i*prime1[j]]=true;
    24             if(i%prime1[j]==0)
    25                 break;
    26         }
    27     }
    28 }
    29 int main()
    30 {
    31 
    32     int t,n;
    33     int ha=0;
    34     scanf("%d",&t);
    35     prime();
    36     while(t--)
    37     {
    38         int cnt=0;
    39         scanf("%d",&n);
    40         printf("Case %d: ",++ha);
    41         for(int i=0;prime1[i]<=n/2;i++)
    42             if(!vis[n-prime1[i]])
    43                 cnt++;
    44             printf("%d
    ",cnt);
    45 
    46     }
    47  return 0;
    48 }
  • 相关阅读:
    关于程序与语言
    最新笔记请查看
    MySQL 性能优化
    k8s flannel无法跨主机ping通pod的解决方案
    k8s 使用kubeadm部署k8s集群初体验
    MySQL 锁和可重复读的隔离级别结合起来的一个示例(来自MySQL45讲第8章)
    MySQL 可重复读 vs 读提交
    Jenkins配置Linux节点,通过ssh方式在Linux节点自动拉取github代码并执行
    AppScan 使用
    Linux 动态链接库和静态库示例
  • 原文地址:https://www.cnblogs.com/ZP-Better/p/4659091.html
Copyright © 2011-2022 走看看