Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
感受:1.BFS求最短路这点没想到啊,周赛的时候拼命的去想DFS,然后就是TLE,RE,根本没有想到BFS求最短路。
2.要加标记数组,不然会死循环。
#include <cstdio> #include <iostream> #include <cstdlib> #include <algorithm> #include <ctime> #include <cmath> #include <string> #include <cstring> #include <stack> #include <queue> #include <list> #include <vector> #include <map> #include <set> using namespace std; const int INF=0x3f3f3f3f; const double eps=1e-10; const double PI=acos(-1.0); #define maxn 220000 int n,k; int vis[maxn]; struct Node { int x, time; }node[maxn]; void bfs() { queue<Node> Q; Node r,t,f; r.time = 0; r.x = n; vis[n] = 1; Q.push(r); while(!Q.empty()) { f = Q.front(); Q.pop(); if(f.x == k) { printf("%d ", f.time); return; } if(f.x < k&&!vis[f.x*2]) { t.x = f.x*2; vis[t.x] = 1; t.time = f.time+1; Q.push(t); } if(f.x+1<=k && !vis[f.x+1]) { t.x = f.x+1; vis[t.x] = 1; t.time = f.time+1; Q.push(t); } if(f.x-1>=0 && !vis[f.x-1]) { t.x = f.x-1; vis[t.x] = 1; t.time = f.time+1; Q.push(t); } } } int main() { while(~scanf("%d%d", &n, &k)) { if(k <= n) { printf("%d ", n-k); continue; } memset(vis, 0, sizeof vis); bfs(); } return 0; }