// 面试题10:斐波那契数列 // 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。 #include <cstdio> // ====================方法1:递归==================== //存在函数调用导致栈溢出的可能, 效率低, 时间复杂度指数递增 long long Fibonacci_Solution1(unsigned int n) { if (n <= 0) return 0; if (n == 1) return 1; return Fibonacci_Solution1(n - 1) + Fibonacci_Solution1(n - 2); } // ====================方法2:循环==================== //时间复杂度O(n) long long Fibonacci_Solution2(unsigned n) { int result[2] = { 0, 1 }; if (n < 2) return result[n]; long long fibNMinusOne = 1; long long fibNMinusTwo = 0; long long fibN = 0; for (unsigned int i = 2; i <= n; ++i) { fibN = fibNMinusOne + fibNMinusTwo; fibNMinusTwo = fibNMinusOne; fibNMinusOne = fibN; } return fibN; } // ====================方法3:基于矩阵乘法==================== //时间复杂度O(logn) #include <cassert> struct Matrix2By2 { Matrix2By2 ( long long m00 = 0, long long m01 = 0, long long m10 = 0, long long m11 = 0 ) :m_00(m00), m_01(m01), m_10(m10), m_11(m11) { } long long m_00; long long m_01; long long m_10; long long m_11; }; Matrix2By2 MatrixMultiply ( const Matrix2By2& matrix1, const Matrix2By2& matrix2 ) { return Matrix2By2( matrix1.m_00 * matrix2.m_00 + matrix1.m_01 * matrix2.m_10, matrix1.m_00 * matrix2.m_01 + matrix1.m_01 * matrix2.m_11, matrix1.m_10 * matrix2.m_00 + matrix1.m_11 * matrix2.m_10, matrix1.m_10 * matrix2.m_01 + matrix1.m_11 * matrix2.m_11); } Matrix2By2 MatrixPower(unsigned int n) { assert(n > 0); Matrix2By2 matrix; if (n == 1) { matrix = Matrix2By2(1, 1, 1, 0); } else if (n % 2 == 0) //n为偶数, 递归求 a^(n/2), 然后平方 { matrix = MatrixPower(n / 2); matrix = MatrixMultiply(matrix, matrix); } else if (n % 2 == 1) //n为奇数, 递归求 a^((n-1)/2), 平方后乘a { matrix = MatrixPower((n - 1) / 2); matrix = MatrixMultiply(matrix, matrix); matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0)); } return matrix; } long long Fibonacci_Solution3(unsigned int n) { int result[2] = { 0, 1 }; if (n < 2) return result[n]; Matrix2By2 PowerNMinus2 = MatrixPower(n - 1); return PowerNMinus2.m_00; }
// ====================测试代码==================== void Test(int n, int expected) { if (Fibonacci_Solution1(n) == expected) printf("Test for %d in solution1 passed. ", n); else printf("Test for %d in solution1 failed. ", n); if (Fibonacci_Solution2(n) == expected) printf("Test for %d in solution2 passed. ", n); else printf("Test for %d in solution2 failed. ", n); if (Fibonacci_Solution3(n) == expected) printf("Test for %d in solution3 passed. ", n); else printf("Test for %d in solution3 failed. ", n); } int main(int argc, char* argv[]) { Test(0, 0); Test(1, 1); Test(2, 1); Test(3, 2); Test(4, 3); Test(5, 5); Test(6, 8); Test(7, 13); Test(8, 21); Test(9, 34); Test(10, 55); Test(40, 102334155); return 0; }
分析:分解问题为多个子问题,自下而上解决。
class Solution { public: int Fibonacci(int n) { int result[2] = {0, 1}; if (n < 2) return result[n]; long long fibNMinusOne = 1; long long fibNMinusTwo = 0; long long fibN = 0; for (int i = 2; i <= n; ++i) { fibN = fibNMinusOne + fibNMinusTwo; fibNMinusTwo = fibNMinusOne; fibNMinusOne = fibN; } return fibN; } };
class Solution { public: int jumpFloor(int number) { int result[3] = {0, 1, 2}; if (number < 3) return result[number]; long long fibNMinusOne = 2; long long fibNMinusTwo = 1; long long fibN = 0; for (int i = 3; i <= number; ++i) { fibN = fibNMinusOne + fibNMinusTwo; fibNMinusTwo = fibNMinusOne; fibNMinusOne = fibN; } return fibN;javascript:void(0); } };
class Solution { public: int jumpFloorII(int number) { //方法1:f(n) = 2^(n - 1), n >= 0 //写法1:pow()函数 if (number <= 0) return -1; else { int n = pow(2, number - 1); return n; } //写法2:位运算 //if (number <= 0) // return -1; //else //{ // int a = 1; // return a << (number-1); //} } };
class Solution { public: int jumpFloorII(int number) { //方法2: f(n) = 1, n = 0 // 1, n = 1 // 2 f(n - 1), n >= 2 if (number <= 0) return -1; else if (number == 1) return 1; else return 2 * jumpFloorII(number - 1); } };