题目描述
给出如下定义:
- 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵。
例如,下面左图中选取第 222 、 444 行和第 222 、 444 、 555 列交叉位置的元素得到一个 2×32 imes 32×3 的子矩阵如右图所示。
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
的其中一个 2×32 imes 32×3 的子矩阵是
4 7 4
8 6 9
-
相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的。
-
矩阵的分值:矩阵中每一对相邻元素之差的绝对值之和。
本题任务:给定一个 nnn 行 mmm 列的正整数矩阵,请你从这个矩阵中选出一个 rrr 行 ccc 列的子矩阵,使得这个子矩阵的分值最小,并输出这个分值。
(本题目为2014NOIP普及## 题目描述
给出如下定义:
- 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵。
例如,下面左图中选取第 222 、 444 行和第 222 、 444 、 555 列交叉位置的元素得到一个 2×32 imes 32×3 的子矩阵如右图所示。
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
的其中一个 2×32 imes 32×3 的子矩阵是
4 7 4
8 6 9
-
相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的。
-
矩阵的分值:矩阵中每一对相邻元素之差的绝对值之和。
本题任务:给定一个 nnn 行 mmm 列的正整数矩阵,请你从这个矩阵中选出一个 rrr 行 ccc 列的子矩阵,使得这个子矩阵的分值最小,并输出这个分值。
(本题目为2014NOIP普及T4)
输入输出格式
输入格式:
第一行包含用空格隔开的四个整数 n,m,r,cn,m,r,cn,m,r,c ,意义如问题描述中所述,每两个整数之间用一个空格隔开。
接下来的 nnn 行,每行包含 mmm 个用空格隔开的整数,用来表示问题描述中那个 nnn 行 mmm 列的矩阵。
输出格式:
一个整数,表示满足题目描述的子矩阵的最小分值。
输入输出样例
输入样例#1: 复制
5 5 2 3
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
输出样例#1: 复制
6
输入样例#2: 复制
7 7 3 3
7 7 7 6 2 10 5
5 8 8 2 1 6 2
2 9 5 5 6 1 7
7 9 3 6 1 7 8
1 9 1 4 7 8 8
10 5 9 1 1 8 10
1 3 1 5 4 8 6
输出样例#2: 复制
16
说明
【输入输出样例1说明】
该矩阵中分值最小的 222 行 333 列的子矩阵由原矩阵的第 444 行、第 555 行与第 111 列、第 333 列、第 444 列交叉位置的元素组成,为
6 5 6
7 5 6
,其分值为:
|6−5| + |5−6| + |7−5| + |5−6| + |6−7| + |5−5| + |6−6| =6。
【输入输出样例2说明】
该矩阵中分值最小的3行3列的子矩阵由原矩阵的第 444 行、第 555 行、第 666 行与第 222 列、第 666 列、第 777 列交叉位置的元素组成,选取的分值最小的子矩阵为
9 7 8
9 8 8
5 8 10
【数据说明】
对于 50%50%50% 的数据, 1≤n≤12,1≤m≤121 ≤ n ≤ 12,1 ≤ m ≤ 121≤n≤12,1≤m≤12 ,矩阵中的每个元素 1≤aij≤201 ≤ a_{ij} ≤ 201≤aij≤20 ;
对于 100%100%100% 的数据, 1≤n≤16,1≤m≤161 ≤ n ≤ 16,1 ≤ m ≤ 161≤n≤16,1≤m≤16 ,矩阵中的每个元素 1≤aij≤1,000,1≤r≤n,1≤c≤m1 ≤ a_{ij} ≤ 1,000,1 ≤ r ≤ n,1 ≤ c ≤ m1≤aij≤1,000,1≤r≤n,1≤c≤m 。T4)
输入输出格式
输入格式:
第一行包含用空格隔开的四个整数 n,m,r,cn,m,r,cn,m,r,c ,意义如问题描述中所述,每两个整数之间用一个空格隔开。
接下来的 nnn 行,每行包含 mmm 个用空格隔开的整数,用来表示问题描述中那个 nnn 行 mmm 列的矩阵。
输出格式:
一个整数,表示满足题目描述的子矩阵的最小分值。
输入输出样例
输入样例#1: 复制
5 5 2 3
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
输出样例#1: 复制
6
输入样例#2: 复制
7 7 3 3
7 7 7 6 2 10 5
5 8 8 2 1 6 2
2 9 5 5 6 1 7
7 9 3 6 1 7 8
1 9 1 4 7 8 8
10 5 9 1 1 8 10
1 3 1 5 4 8 6
输出样例#2: 复制
16
说明
【输入输出样例1说明】
该矩阵中分值最小的 222 行 333 列的子矩阵由原矩阵的第 444 行、第 555 行与第 111 列、第 333 列、第 444 列交叉位置的元素组成,为
6 5 6
7 5 6
,其分值为:
|6−5| + |5−6| + |7−5| + |5−6| + |6−7| + |5−5| + |6−6| =6。
【输入输出样例2说明】
该矩阵中分值最小的3行3列的子矩阵由原矩阵的第 444 行、第 555 行、第 666 行与第 222 列、第 666 列、第 777 列交叉位置的元素组成,选取的分值最小的子矩阵为
9 7 8
9 8 8
5 8 10
【数据说明】
对于 (50\%)的数据, (1 ≤ n ≤ 12,1 ≤ m ≤ 12),矩阵中的每个元素 (1 ≤ a_{ij} ≤ 20);
对于 (100\%) 的数据, (1≤n≤16,1≤m≤16) ,矩阵中的每个元素 (1 ≤ a_{ij} ≤ 1,000,1 ≤ r ≤ n,1 ≤ c ≤ m)。
先爆搜出(r)行,再在选出的行中dp选出(c)列即可
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int i,m,n,j,k,a[20][20],b[20][20],r,c,d[20],w[20],f[20][20],ans=0x3f3f3f3f;
void dp()
{
memset(w,0,sizeof(w));
memset(b,0,sizeof(b));
memset(f,0x3f,sizeof(f));
for(int i=1;i<=m;i++)
for(int j=2;j<=r;j++)
w[i]+=abs(a[d[j]][i]-a[d[j-1]][i]);
for(int i=1;i<m;i++)
for(int j=i+1;j<=m;j++)
for(int l=1;l<=r;l++)
b[i][j]+=abs(a[d[l]][i]-a[d[l]][j]);
f[0][0]=0;
for(int i=1;i<=m;i++)
for(int j=1;j<=min(i,c);j++)
for(int l=j-1;l<i;l++)
f[i][j]=min(f[i][j],f[l][j-1]+b[l][i]+w[i]);
for(int i=c;i<=m;i++) ans=min(ans,f[i][c]);
}
void dfs(int k,int now)
{
if(k==r) {dp(); return;}
for(int i=now;i<=n-r+k+1;i++) d[k+1]=i,dfs(k+1,i+1);
}
int main()
{
scanf("%d%d%d%d",&n,&m,&r,&c);
for(i=1;i<=n;i++)
for(j=1;j<=m;j++) scanf("%d",&a[i][j]);
dfs(0,1);
printf("%d",ans);
}