zoukankan      html  css  js  c++  java
  • poj 3264 Balanced Lineup

                                                                                                                                                                   Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 51876   Accepted: 24319
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0
    题意:给定一串长度为N的数列,现在给定子序列[a,b],要查询连续的子数列[a,b]区间中中的最大值和最小值的差。
    思路:典型的线段树问题,对于线段树中每个节点k,维护两个值,即维护该节点对应的区间[l,r)中的最大值和最小值,最后输出其差即可。
    AC代码:
    #define _CRT_SECURE_NO_DEPRECATE
    #include<iostream>
    #include<algorithm>
    #include<vector>
    using namespace std;
    const int ST_SIZE = (1 << 17) - 1,N_MAX=50000+2;
    int N, Q;
    int height[N_MAX];
    int dat_large[ST_SIZE], dat_small[ST_SIZE];
    void init(int k,int l,int r) {//节点k,对应区间[l,r)
        if (r - l == 1) {
           dat_large[k] = dat_small[k] = height[l];//!!!!!!!!!!
     }
        else {
            int left = 2 * k + 1;
            int right = 2 * k + 2;
            init(left,l,(l+r)/2);
            init(right, (l + r) / 2, r);
            dat_large[k] = max(dat_large[left],dat_large[right]);
            dat_small[k] = min(dat_small[left],dat_small[right]);
        }
    }
    
    pair<int,int> query(int k,int l,int r,int a,int b) {//节点k,对应区间[l,r),查找区间[a,b),用于找区间[a,b)的最大最小值
        //pair<int,int>find;//分别存放最大和最小值
        if (b <= l || a >= r) {//无交集
            return make_pair(0,INT_MAX);
        }
        else if (a <= l&& b>= r) {//完全包含区间!!!!!!!!!!!!!!!!!!
            return make_pair(dat_large[k], dat_small[k]);
         }
        else {
            pair<int, int>find1 = query(2*k+1,l,(l+r)/2,a,b);
            pair<int, int>find2 = query(2 * k + 2, (l + r) / 2, r, a, b);
            int large = max(find1.first,find2.first);
            int small = min(find1.second,find2.second);
            return make_pair(large, small);
        }
    }
    
    int main() {
        scanf("%d%d",&N,&Q);
        for (int i = 0; i < N;i++) {
            scanf("%d",&height[i]);
        }
        init(0,0,N);
        for (int i = 0; i < Q; i++) {
            int a, b;
            scanf("%d%d",&a,&b);
            a--, b--;
            pair<int, int>find = query(0,0,N,a,b+1);
            printf("%d
    ",find.first-find.second);
        }
        return 0;
    }
  • 相关阅读:
    Swagger介绍
    mybatis-plus常用操作
    [比赛][蓝桥杯] 第十一届蓝桥杯第二次省赛C++A组
    [题目][蓝桥杯PREV-14] 高僧斗法
    [题目][蓝桥杯PREV] 大合集
    [题目][APIO2009][蓝桥杯ALGO-44] 采油区域
    [题目][蓝桥杯ALGO] 大合集
    [题目][NOIP2001][蓝桥杯ALGO-25] Car 的旅行路线
    [题目][蓝桥杯ALGO-22] 数的划分
    [知识点] 1.5.3 运算符重载
  • 原文地址:https://www.cnblogs.com/ZefengYao/p/6690944.html
Copyright © 2011-2022 走看看