zoukankan      html  css  js  c++  java
  • poj 1466 Girls and Boys

    Girls and Boys
    Time Limit: 5000MS   Memory Limit: 10000K
    Total Submissions: 12857   Accepted: 5723

    Description

    In the second year of the university somebody started a study on the romantic relations between the students. The relation "romantically involved" is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been "romantically involved". The result of the program is the number of students in such a set.

    Input

    The input contains several data sets in text format. Each data set represents one set of subjects of the study, with the following description: 

    the number of students 
    the description of each student, in the following format 
    student_identifier:(number_of_romantic_relations) student_identifier1 student_identifier2 student_identifier3 ... 
    or 
    student_identifier:(0) 

    The student_identifier is an integer number between 0 and n-1 (n <=500 ), for n subjects.

    Output

    For each given data set, the program should write to standard output a line containing the result.

    Sample Input

    7
    0: (3) 4 5 6
    1: (2) 4 6
    2: (0)
    3: (0)
    4: (2) 0 1
    5: (1) 0
    6: (2) 0 1
    3
    0: (2) 1 2
    1: (1) 0
    2: (1) 0

    Sample Output

    5
    2

    翻译:给出n个人,这些人相互之间存在爱情,现在要从这n个人中挑出一个集合,使得集合中的人相互之间都没有爱慕关系,强行让他们都变成单身狗,问这个集合最大的人数。
    思路:题意就是最大独立集问题,且最大独立集=V-最大匹配,V是所有顶点的个数,此题中即为n.
    AC代码:
    #define _CRT_SECURE_NO_DEPRECATE
    #include<iostream>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<vector>
    #include<cstring>
    #include<string>
    using namespace std;
    #define INF 0x3f3f3f3f
    const int N_MAX =500;
    int V;//点的个数
    vector<int>G[N_MAX];
    int match[N_MAX];
    bool used[N_MAX];
    void add_edge(int u, int v) {
        G[u].push_back(v);
        //G[v].push_back(u);
    }
    
    bool dfs(int v) {
        used[v] = true;
        for (int i = 0; i < G[v].size(); i++) {
            int u = G[v][i], w = match[u];
            if (w < 0 || !used[w] && dfs(w)) {
                match[v] = u;
                match[u] = v;
                return true;
            }
        }
        return false;
    }
    
    int bipartite_matching() {
        int res = 0;
        memset(match, -1, sizeof(match));
        for (int v = 0; v < V; v++) {
            if (match[v] < 0) {
                memset(used, 0, sizeof(used));
                if (dfs(v))
                    res++;
            }
        }
        return res;
    }
    
    
    int main() {
        int n;
        while (scanf("%d",&n)!=EOF) {
            V = n;
            for (int i = 0; i < n;i++) {
                int x, n1;
                scanf("%d: (%d) ",&x,&n1);
                if (n1)for (int j = 0; j < n1; j++) {
                    int y;
                    scanf("%d",&y);
                    add_edge(x,y);
                }
            }
            printf("%d
    ",V-bipartite_matching());
            for (int i = 0; i < V;i++) {
                G[i].clear();
            }
        }
        return 0;
    }
  • 相关阅读:
    mysql数据库-秒级别精度恢复数据、误删表恢复实现
    二进制安装MySQL
    mysql数据库-备份与还原-Percona XtraBackup 2.4备份工具使用
    2020-12-20 旋转图像
    第二章-SQL
    第二章-关系数据库
    Rust下载与安装
    2020-12-18 找不同
    第一章-数据库系统概述
    mysql-5.7安装配置
  • 原文地址:https://www.cnblogs.com/ZefengYao/p/7220822.html
Copyright © 2011-2022 走看看