zoukankan      html  css  js  c++  java
  • poj 2377 Bad Cowtractors

    Bad Cowtractors
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 17411   Accepted: 7059

    Description

    Bessie has been hired to build a cheap internet network among Farmer John's N (2 <= N <= 1,000) barns that are conveniently numbered 1..N. FJ has already done some surveying, and found M (1 <= M <= 20,000) possible connection routes between pairs of barns. Each possible connection route has an associated cost C (1 <= C <= 100,000). Farmer John wants to spend the least amount on connecting the network; he doesn't even want to pay Bessie. 

    Realizing Farmer John will not pay her, Bessie decides to do the worst job possible. She must decide on a set of connections to install so that (i) the total cost of these connections is as large as possible, (ii) all the barns are connected together (so that it is possible to reach any barn from any other barn via a path of installed connections), and (iii) so that there are no cycles among the connections (which Farmer John would easily be able to detect). Conditions (ii) and (iii) ensure that the final set of connections will look like a "tree".

    Input

    * Line 1: Two space-separated integers: N and M 

    * Lines 2..M+1: Each line contains three space-separated integers A, B, and C that describe a connection route between barns A and B of cost C.

    Output

    * Line 1: A single integer, containing the price of the most expensive tree connecting all the barns. If it is not possible to connect all the barns, output -1.

    Sample Input

    5 8
    1 2 3
    1 3 7
    2 3 10
    2 4 4
    2 5 8
    3 4 6
    3 5 2
    4 5 17

    Sample Output

    42

    Hint

    OUTPUT DETAILS: 

    The most expensive tree has cost 17 + 8 + 10 + 7 = 42. It uses the following connections: 4 to 5, 2 to 5, 2 to 3, and 1 to 3.

    Source

     
    思路:最小生成树
    AC代码:
    #include <iostream>
    #include<algorithm>
    #include<vector>
    #include<cmath>
    #include<cstring>
    #include<queue>
    using namespace std;
    #define N_MAX 1010
    #define INF 0x3f3f3f3f
    typedef long long ll;
    struct edge{
       int to,cost;
       edge(int to=0,int cost=0):to(to),cost(cost){}
    };
    struct P{
       int first,second;
       P(int first=0,int second=0):first(first),second(second){}
       bool operator < (const P &b)const{
          return first>b.first;
       }
    };
    vector<edge>G[N_MAX];
    int d[N_MAX],vis[N_MAX];
    int n,m;ll tot=0;
    void init(int n){
      for(int i=0;i<n;i++)G[i].clear();
      memset(d,INF,sizeof(d));
      memset(vis,0,sizeof(vis));
      tot=0;
    }
    void prim(int s){
      priority_queue<P>que;
      que.push(P(0,s));
      d[s]=0;
      while(!que.empty()){
         P p=que.top();que.pop();
         int v=p.second;
         if(d[v]<p.first)continue;
         if(!vis[v]){tot+=d[v];vis[v]=true;}
         for(int i=0;i<G[v].size();i++){
             edge e=G[v][i];
             if(d[e.to]>e.cost){
                d[e.to]=e.cost;
                que.push(P(d[e.to],e.to));
             }
         }
      }
    }
    int main(){
        while(scanf("%d%d",&n,&m)!=EOF){
                init(n);
            for(int i=0;i<m;i++){
              int from,to,cost;scanf("%d%d%d",&from,&to,&cost);from--,to--;
              cost=-cost;
              G[from].push_back(edge(to,cost));
              G[to].push_back(edge(from,cost));
            }
            prim(0);
            bool flag=1;
            for(int i=0;i<n;i++){
                if(!vis[i]){flag=0;break;}
            }
            if(flag)
            printf("%lld
    ",-tot);
            else puts("-1");
        }
        return 0;
    }
  • 相关阅读:
    复制构造函数与重载=操作符
    size_t
    模板
    理解函数对象的函数适配器
    抽象基类
    派生类的一些知识
    了解protected 以及公用、私有和受保护的继承
    第四章 分治策略 最大子数组问题
    第二章 归并排序 分治法
    第二章 插入排序
  • 原文地址:https://www.cnblogs.com/ZefengYao/p/8809927.html
Copyright © 2011-2022 走看看