zoukankan      html  css  js  c++  java
  • [poj2411] Mondriaan's Dream (状压DP)

    状压DP


    Description

    Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways.

    此处输入图片的描述

    Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

    Input

    The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

    Output

    For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

    此处输入图片的描述

    Sample Input

    1 2
    1 3
    1 4
    2 2
    2 3
    2 4
    2 11
    4 11
    0 0

    Sample Output

    1
    0
    1
    2
    3
    5
    144
    51205

    Source

    Ulm Local 2000


    题目大意

    给出一个n * m 的矩形,让你用1 * 2 的矩形去填满,问有多少种方案

    题解

    由于题目给出的数据很小,所以可以直接状压,枚举每一行的状态向后转移。

    代码

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    using namespace std;
    
    long long dp[13][1 << 11];
    long long temp;
    int n,m;
    
    void dfs(int i,int p,int k) {
    	if (k >= m) {
    		dp[i][p] += temp;return;
    	}
    	dfs(i,p,k + 1);
    	if (k <= m - 2 && !(p&(1 << (k + 1))) && !(p&(1 << (k)))) {
    		dfs(i,p | 1 << (k + 1) | 1 << k,k + 2);
    	}
    }
    
    int main() {
    	while (cin >> n >> m && n && m) {
    		memset(dp,0,sizeof(dp));
    		temp = 1;
    		int ed = 1 << m;
    		dfs(0,0,0);
    		for (int i = 1; i < n; i++)
    			for (int j = 0; j < ed; j++)
    				if (dp[i - 1][j]) {
    					temp = dp[i - 1][j];
    					dfs(i,~j&((1 << m) - 1),0);
    				}
    		cout << dp[n-1][ed-1] << endl;
    	}
    	return 0;
    }
    
  • 相关阅读:
    Binomial Coeffcients(山东省第二届省赛G题)
    合法的C标示符(判断是否是数字或字母)
    HDU2544最短路问题Floydwarshall Algorithm做法
    简单N的阶乘
    手动实现类的属性
    基本语法基本的数据类型
    UITableViewCell的背景
    基本语法类
    UITableView专题
    单击视图空白处隐藏IPhone键盘
  • 原文地址:https://www.cnblogs.com/ZegWe/p/6024714.html
Copyright © 2011-2022 走看看