zoukankan      html  css  js  c++  java
  • [poj2411] Mondriaan's Dream (状压DP)

    状压DP


    Description

    Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways.

    此处输入图片的描述

    Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

    Input

    The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

    Output

    For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

    此处输入图片的描述

    Sample Input

    1 2
    1 3
    1 4
    2 2
    2 3
    2 4
    2 11
    4 11
    0 0

    Sample Output

    1
    0
    1
    2
    3
    5
    144
    51205

    Source

    Ulm Local 2000


    题目大意

    给出一个n * m 的矩形,让你用1 * 2 的矩形去填满,问有多少种方案

    题解

    由于题目给出的数据很小,所以可以直接状压,枚举每一行的状态向后转移。

    代码

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    using namespace std;
    
    long long dp[13][1 << 11];
    long long temp;
    int n,m;
    
    void dfs(int i,int p,int k) {
    	if (k >= m) {
    		dp[i][p] += temp;return;
    	}
    	dfs(i,p,k + 1);
    	if (k <= m - 2 && !(p&(1 << (k + 1))) && !(p&(1 << (k)))) {
    		dfs(i,p | 1 << (k + 1) | 1 << k,k + 2);
    	}
    }
    
    int main() {
    	while (cin >> n >> m && n && m) {
    		memset(dp,0,sizeof(dp));
    		temp = 1;
    		int ed = 1 << m;
    		dfs(0,0,0);
    		for (int i = 1; i < n; i++)
    			for (int j = 0; j < ed; j++)
    				if (dp[i - 1][j]) {
    					temp = dp[i - 1][j];
    					dfs(i,~j&((1 << m) - 1),0);
    				}
    		cout << dp[n-1][ed-1] << endl;
    	}
    	return 0;
    }
    
  • 相关阅读:
    Oracle中的to_date参数含义
    Oracle 中 IW和WW 有何差别
    iBaits.Net(1):简介与安装
    带你逛逛诺基亚芬兰总部:满满都是回忆啊
    LINQ的分组聚合技术
    WPF的Docking框架 ——AvalonDock
    iBatis.Net(3):创建SqlMapper实例
    iBatis.Net(2):基本概念与配置
    C#异步编程及其同步机制
    web使用
  • 原文地址:https://www.cnblogs.com/ZegWe/p/6024714.html
Copyright © 2011-2022 走看看