zoukankan      html  css  js  c++  java
  • SG函数学习总结

    有点散乱, 将就着看吧.
    首先是博弈论的基础, 即 N 和 P 两种状态: N 为必胜状态, P 为必败状态.
    对于N, P两种状态, 则有
    1. 没有任何合法操作的状态, P;
    2. 可以移动到P局面的情况为N状态;
    3. 可以移动到的所有状态均为N状态, 则当前情况为P状态.
    然后就可以引入SG函数了.

    首先定义mex运算, 这是施加于一个集合的运算, 表示最小的不属于这个集合的非负整数。
    for instance,
    mex{0, 1, 2, 4} = 3、mex{2, 3, 5} = 0、mex{} = 0。
    对于一个给定的有向无环图, 定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x) = mex{ g(y) | y是x的后继}, 这里的g(x)即
    sg[x]。

    例如:取石子问题, 有1堆n个的石子, 每次只能取{1, 3, 4}个石子, 先取完石子者胜利, 那么各个数的SG值为多少?
    sg[0] = 0, f[] = {1, 3, 4},
    x = 1时, 可以取走1-f{1}个石子, 剩余{0}个, mex{sg[0]} = {0}, 故sg[1] = 1;
    x = 2时, 可以取走2-f{1}个石子, 剩余{1}个, mex{sg[1]} = {1}, 故sg[2] = 0;
    x = 3时, 可以取走3-f{1, 3}个石子, 剩余{2, 0}个, mex{sg[2], sg[0]} = {0, 0}, 故sg[3] = 1;
    x = 4时, 可以取走4-f{1, 3, 4}个石子, 剩余{3, 1, 0}个, mex{sg[3], sg[1], sg[0]} = {1, 1, 0}, 故sg[4] = 2;
    x = 5时, 可以取走5-f{1, 3, 4}个石子, 剩余{4, 2, 1}个, mex{sg[4], sg[2], sg[1]} = {2, 0, 1}, 故sg[5] = 3;

    以此类推…..

    x   0   1   2   3   4   5   6   7   8
    sg  0   1   0   1   2   3   2   0   1

    这里的sg函数与上面提到的N, P两种状态实际上是吻合的, 当 sg[i] == 0 时, 处于P状态; 否则处于N状态.

  • 相关阅读:
    项目包结构
    准备dbcp2-2.1.1和pool2-2.4.2 、commons-dbcp-1.4jar包
    导入javax.servlet。伺服登记无法解决:The import javax.servlet.MultipartConfigElement cannot be resolved
    准备mysql-connector-java
    准备mybatis-spring
    准备spring
    准备MyBatis
    vim编辑器使用
    jquery怎样做出分页效果
    快速入门系列--WCF--02消息、会话与服务寄宿
  • 原文地址:https://www.cnblogs.com/ZeonfaiHo/p/6402847.html
Copyright © 2011-2022 走看看