一直不是很会做矩阵类的题(其实是什么题都不会做)。
积累了新思路(脑洞):
发现如果边权只有0跟1,那么就是最简单的快速幂问题。但边权并不是,不过边权很小,只有1 ~ 9,所以我们可以在原有的矩阵上扩展一些虚点,将大于1的边权用1来表示出来。
其实这样用简单的问题来组合出复杂问题的思路还是挺常见的。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 100;
int n, m;
int base[maxn][maxn], tmp[maxn][maxn], c[maxn][maxn];
void Matpow(int t) {
for (int i = 1; i <= n * 9; i++)
for (int j = 1; j <= n * 9; j++)
tmp[i][j] = (i == j ? 1 : 0);
while (t) {
if (t & 1) {
memset(c, 0, sizeof c);
for (int i = 1; i <= n * 9; i++) {
for (int j = 1; j <= n * 9; j++) {
for (int k = 1; k <= n * 9; k++) {
c[i][j] += tmp[i][k] * base[k][j];
}
if (c[i][j] >= 2009) c[i][j] %= 2009;
}
}
for (int i = 1; i <= n * 9; i++)
for (int j = 1; j <= n * 9; j++)
tmp[i][j] = c[i][j];
}
memset(c, 0, sizeof c);
for (int i = 1; i <= n * 9; i++) {
for (int j = 1; j <= n * 9; j++) {
for (int k = 1; k <= n * 9; k++) {
c[i][j] += base[i][k] * base[k][j];
}
if (c[i][j] >= 2009) c[i][j] %= 2009;
}
}
for (int i = 1; i <= n * 9; i++)
for (int j = 1; j <= n * 9; j++)
base[i][j] = c[i][j];
t >>= 1;
}
}
int main() {
scanf("%d %d", &n, &m);
int x;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= 8; j++)
base[i + j * n][i + (j - 1) * n] = 1;
for (int j = 1; j <= n; j++) {
scanf("%1d", &x);
if (x) base[i][j + n * (x - 1)] = 1;
}
}
Matpow(m);
printf("%d
", tmp[1][n]);
return 0;
}