zoukankan      html  css  js  c++  java
  • BZOJ 1208: [HNOI2004]宠物收养所

    二次联通门 : BZOJ 1208: [HNOI2004]宠物收养所

    /*
        BZOJ 1208: [HNOI2004]宠物收养所
    
        红黑树
        删除 查前驱 查后继 插入
    */
    #include <cstdio>
    #include <iostream>
     
    #define Max 100001
    #define INF 1e9 
    #define Red true
    #define Black false
     
    const int BUF = 100000100; char Buf[BUF], *buf = Buf;
    #define rg register 
    #define Inline __attri
    bute__( ( optimize( "-O2" ) ) )
    Inline void read (int &now)
    {
        int temp = 0;
        for (now = 0; !isdigit (*buf); ++ buf)
            if (*buf == '-')
                temp = 1;
        for (; isdigit (*buf); now = now * 10 + *buf - '0', ++ buf);
        if (temp)    
            now = -now;
    }
     
    struct R_D
    {
        int key, size, weigth;
        bool color;
        
        R_D *father, *child[2];
        
        Inline void Fill (const int &__key, const bool &__color, const int &z, register R_D *now)
        {
            this->key = __key;
            this->color = __color;
            this->size = this->weigth = z;
            
            this->father = this->child[0] = this->child[1] = now;
        }
        
        Inline void Up ()
        {
            this->size = this->child[0]->size + this->child[1]->size + this->weigth;
        }
        
        Inline void Down ()
        {
            for (R_D *now = this; now->size; now = now->father)
                now->size --;
        }
        
        Inline int Get_Pos (const int &now) const
        {
            return this->key == now ? -1 : now > this->key;
        } 
    };
     
     
    class Red_Black_Tree
    {
        
        private :
            
            int Top;
            
            R_D *Root, *null;
            R_D poor[Max], *Tail, *reuse[Max];
            
            
            Inline R_D *New (const int &key)
            {
                register R_D *now = null;
                if (!Top)
                    now = Tail ++;
                else
                    now = reuse[-- Top];
                now->Fill (key, Red, 1, null);
                return now;
            }
            
            Inline void Rotate (R_D *&now, const bool &pos)
            {
                register R_D *C = now->child[pos ^ 1];
                now->child[pos ^ 1] = C->child[pos];
                if (C->child[pos]->size)
                    C->child[pos]->father = now;
                C->father = now->father;
                if (!now->father->size)
                    Root = C;
                else 
                    now->father->child[now->father->child[0] != now] = C;
                C->child[pos] = now;
                now->father = C;
                C->size = now->size;
                now->Up ();
            }
            
            Inline void Insert_Fill (register R_D *&now)
            {
                for (; now->father->color; )
                {
                    R_D *Father = now->father, *Grand = Father->father;
                    bool pos = Father == Grand->child[0];
                    R_D *Uncle = Grand->child[pos];
                    if (Uncle->color)
                    {
                        Father->color = Uncle->color = Black;
                        Grand->color = Red;
                        now = Grand;
                    }
                    else if (now == Father->child[pos])
                        Rotate (now = Father, pos ^ 1);
                    else
                    {
                        Grand->color = Red;
                        Father->color = Black;
                        Rotate (Grand, pos);
                    }
                }
                Root->color = Black;
            }
            
            Inline R_D *Find (R_D *now, int key)
            {
                for (; now->size && now->key != key; now = now->child[now->key < key]);
                return now;
            }
            
            Inline void Delete_Fill (register R_D *&now)
            {
                for (; now != Root && now->color == Black; )
                {
                    register bool pos = now == now->father->child[0];
                    R_D *Father = now->father, *Uncle = Father->child[pos];
                    if (Uncle->color == Red)
                    {
                        Uncle->color = Black;
                        Father->color = Red;
                        Rotate (now->father, pos ^ 1);
                        Uncle = Father->child[pos];
                    }
                    else if (Uncle->child[0]->color == Black && Uncle->child[1]->color == Black)
                    {
                        Uncle->color = Red;
                        now = Father;
                    }
                    else
                    {
                        if (Uncle->child[pos]->color == Black)
                        {
                            Uncle->child[pos ^ 1]->color = Black;
                            Uncle->color = Red;
                            Rotate (Uncle, pos);
                            Uncle = Father->child[pos];
                        }
                        Uncle->color = Father->color;
                        Uncle->child[pos]->color = Father->color = Black;
                        Rotate (Father, pos ^ 1);
                        break;
                    }
                }
                now->color = Black;
            }
            
        public :
            
            Red_Black_Tree ()
            {
                Top = 0;
                Tail = &poor[Top];
                null = Tail ++;
                null->Fill (0, Black, 0, NULL);
                Root = null;
            }
            
            Inline void Insert (const int &key)
            {
                register R_D *now = Root, *Father = null;
                register int pos;
                for (; now->size; now = now->child[pos])
                {
                    now->size ++;
                    Father = now;
                    pos = now->Get_Pos (key);
                    if (pos == -1)
                    {
                        now->weigth ++;
                        return ;
                    }
                }
                now = New (key);
                if (Father->size)
                    Father->child[key > Father->key] = now;
                else
                    Root = now;
                now->father = Father;
                this->Insert_Fill (now); 
            }
            
            Inline void Delete (const int &key)
            {
                register R_D *res = Find (Root, key);
                if (!res->size)
                    return ;
                if (res->weigth > 1)
                {
                    res->weigth --;
                    res->Down ();
                    return ;
                }
                register R_D *Father = res, *now = null;
                
                if (res->child[0]->size && res->child[1]->size)
                    for (Father = res->child[1]; Father->child[0]->size; Father = Father->child[0]);
                
                now = Father->child[!Father->child[0]->size];
                now->father = Father->father;
                if (!Father->father->size)
                    Root = now;
                else
                    Father->father->child[Father->father->child[1] == Father] = now;
                
                if (res != Father)
                {
                    res->key = Father->key;
                    res->weigth = Father->weigth;
                }
                
                Father->father->Down ();
        
                for (R_D *Fuck = Father->father; Father->weigth > 1 && Fuck->size && Fuck != res; Fuck->size -= Father->weigth - 1, Fuck = Fuck->father);
        
                if (Father->color == Black)
                    Delete_Fill (now);
                
                reuse[Top ++] = Father;
            }
            
            Inline int Get_kth_number (register int k)
            {
                register int res;
                register R_D *now = Root;
                
                for (; now->size; )
                {
                    res = now->child[0]->size;
                    
                    if (k <= res)
                        now = now->child[0];
                    else if (res + 1 <= k && k <= res + now->weigth)
                        break;
                    else 
                    {
                        k -= res + now->weigth;
                        now = now->child[1];
                    }
                }
                return now->key;
            }
            
            Inline int Get_rank (const int &key)
            {
                register int res, cur = 0;
                register R_D *now = Root;
                
                for (; now->size; )
                {
                    res = now->child[0]->size;
                    if (now->key == key)
                        break;
                    else if (now->key > key)
                        now = now->child[0];
                    else
                    {
                        cur += res + now->weigth;
                        now = now->child[1];
                    }
                }
                
                return cur + res + 1;
            }
            
            Inline int Find_Suffix (const int &key)
            {
                register int res = INF;
                
                for (R_D *now = Root; now->size; )
                    if (now->key > key)
                    {
                        res = now->key;
                        now = now->child[0];
                    }
                    else 
                        now = now->child[1];
                
                return res;
            
            }
            
            Inline int Find_Prefix (const int &key)
            {
                register int res = INF;
                
                for (R_D *now = Root; now->size; )
                    if (now->key < key)
                    {
                        res = now->key;
                        now = now->child[1];
                    }
                    else
                        now = now->child[0];
                return res;
            }
            int Size () { return Root->size; }
    };
     
    Red_Black_Tree A, B;
    inline int min (int a, int b) { return a < b ? a : b; }
    inline int abs (int a) { return a < 0 ? -a : a; }
    #define Mod 1000000
    int Main ()
    {
        fread (buf, 1, BUF, stdin);
        int N; read (N); rg int i, Answer = 0; int t, x, p, s;
        for (i = 1; i <= N; ++ i)
        {
            read (t), read (x);
            if (t == 0)
            {
                if (B.Size ())
                {
                    p = B.Find_Prefix (x);
                    s = B.Find_Suffix (x);
                    if (abs (x - p) == abs (x - s) || abs (x - p) < abs (x - s))
                        B.Delete (p), Answer = (Answer + abs (x - p)) % Mod;
                    else B.Delete (s), Answer = (Answer + abs (x - s)) % Mod;
                }
                else A.Insert (x);
            }
            else 
            {
                if (A.Size ())
                {
                    p = A.Find_Prefix (x);
                    s = A.Find_Suffix (x);
                    if (abs (x - p) == abs (x - s) || abs (x - p) < abs (x - s))
                        A.Delete (p), Answer = (Answer + abs (x - p)) % Mod;
                    else A.Delete (s), Answer = (Answer + abs (x - s)) % Mod;
                }
                else B.Insert (x);
            }
        }
        printf ("%d", Answer);
    }
    int ZlycerQan = Main();
    int main(int argc, char *argv[]){;}
  • 相关阅读:
    php 验证码生成方法 及使用
    idea的jar文件,“java.lang.SecurityException: Invalid signature file digest for Manifest main attribute
    Ubuntu下Java JDK安装
    Ubuntu 忘记密码
    为 ubuntu 切换更新源
    使用Java开发桌面即时通讯程序遇到的问题
    MySQL 1093
    Java中命名Dao、Bean、conn等包的含义(不定期补充)
    通过导入Jar包的方式使用JSONObject
    IM开发通信协议基础知识(一)---TCP、UDP、HTTP、SOCKET
  • 原文地址:https://www.cnblogs.com/ZlycerQan/p/7569867.html
Copyright © 2011-2022 走看看