zoukankan      html  css  js  c++  java
  • 20171107校内模拟赛

     

     lqz已经什么题也写不对了。

    期望得分:100 + 100 + 100

    实际得分:95  + 70  + 60

    T1本来写的矩阵快速幂,可是怎么也调不出来(初始矩阵建错),于是就去打了个找循环节的做法,自己手算了一下貌似循环节的长度大部分都很短,于是就去写了,但是被卡掉一个点。

    T2打了个表,一下子发现是个等差数列,于是就写了正解,但是自己智障,特判了一下n==m的情况,这本来不用特判,正常跑就能跑出来,但是自己莫名其妙就认为当n==m的时候答案是固定的,于是挂了30分,去掉后就可以AC

    T3本来打的是标算,但是打错了一个字母,哭死。ev[i] -> _v[i]

    T1

    /*
        因为是mod7
        所以可以找一下从哪里开始循环之前的值
        找到就退出 
    */
    #include <cstdio>
    #include <iostream>
    
    #define rg register
    typedef long long LL;
    #define Max 55000000
    short f[Max];
    std :: string Name = "attack", _I = ".in", _O = ".out";
    int main (int argc, char *argv[])
    {
        freopen ((Name + _I).c_str (), "r", stdin);
        freopen ((Name + _O).c_str (), "w", stdout);
        f[1] = 1, f[2] = 1;
        LL A, B, N; std :: cin >> A >> B >> N; rg int i;
        for (i = 3; i <= N; ++ i)
        {
            f[i] = (A * f[i - 1] + B * f[i - 2]) % 7;
            if (f[i] == 1 && f[i - 1] == 1) break;
        }
        if (i == 3) return puts ("1"), 0;
        std :: cout << ((i == N + 1) ? f[N] : f[((N % (i - 2)) == 0 ? (i - 2) : (N % (i - 2)))]);
        return 0;
    }
    /*
        矩阵快速幂 
    */
    #include <cstdio>
    #include <iostream>
    
    #define rg register
    typedef long long LL;
    
    struct Matrix
    {
        int c[2][2];
    #define L 2
        Matrix operator * (const Matrix &rhs)
        {
            Matrix res;
            for (rg int i = 0, j, k; i < L; ++ i)
                for (j = 0; j < L; ++ j)
                {
                    res.c[i][j] = 0;
                    for (k = 0; k < L; ++ k)
                        (res.c[i][j] += c[i][k] * rhs.c[k][j]) %= 7;
                }
            res.c[0][0] %= 7;
            return res;
        }
    } Answer, P;
    
    std :: string Name = "attack", _I = ".in", _O = ".out";
    int main (int argc, char *argv[])
    {
        freopen ((Name + _I).c_str (), "r", stdin);
        freopen ((Name + _O).c_str (), "w", stdout);
        LL A, B, N; std :: cin >> A >> B >> N; rg int i;
        Answer.c[0][0] = Answer.c[0][1] = 1;
        Answer.c[1][1] = Answer.c[1][0] = 0;
        P.c[0][0] = A % 7, P.c[1][0] = B % 7, P.c[0][1] = 1, P.c[1][1] = 0;
        if (N <= 2) return puts ("1"), 0;
        for (N -= 2; N; P = P * P, N >>= 1)
            if (N & 1) Answer = Answer * P;
        std :: cout << Answer.c[0][0] % 7;
        return 0;
    }

    T2

    /*
        求出公差即可 
    */
    #include <cstdio>
    #include <iostream>
    
    #define rg register
    inline void read (int &n)
    {
        rg char c = getchar ();
        for (n = 0; !isdigit (c); c = getchar ());
        for (; isdigit (c); n = n * 10 + c - '0', c = getchar ());
    }
    typedef double flo;
    std :: string Name = "fseq", _I = ".in", _O = ".out";
    int main (int argc, char *argv[])
    {
        freopen ((Name + _I).c_str (), "r", stdin);
        freopen ((Name + _O).c_str (), "w", stdout);
        int T; flo x, y, d; read (T);
        for (; T; -- T)
        {
            scanf ("%lf%lf", &x, &y);
            if (y == 0) { puts ("1.000000"); continue; }
            if (x == 0) { puts ("0.000000"); continue; }
    
            if (y > x) { puts ("0.000000"); continue; }
            d = 1.0 / (x + 1.0);
            printf ("%.6lf
    ", 1.0 - y * d);
        }
        return 0;
    }

    T3

    /*
        套路题,没营养
        Tarjan缩点 
        求出缩完点后树的直径
        对于每个点,若在最长链上就直接对两个端点取max
        否则就一直往上跳,累加边权,直到跳到最长链上
        然后做上一种情况的操作就好了 
    */  
    #include <cstdio>
    #include <iostream>
    #define rg register
    
    inline void read (int &n)
    {
        rg char c = getchar ();
        for (n = 0; !isdigit (c); c = getchar ());
        for (; isdigit (c); n = n * 10 + c - '0', c = getchar ());
    }
    
    std :: string Name = "prize", _I = ".in", _O = ".out";
    
    #define Max 40008
    int _v[Max * 20], _n[Max * 20], list[Max * 20], EC = 1, _d[Max * 20];
    
    int N;
    inline void In (int u, int v, int d)
    { _v[++ EC] = v, _n[EC] = list[u], list[u] = EC, _d[EC] = d; }
    int t, sk[Max], DC, SC;
    int dfn[Max], low[Max], scc[Max];
     
    inline void cmin (int &a, int b) { if (b < a) a = b; }
    
    void Dfs (int n, int l)
    {
        sk[++ t] = n; dfn[n] = low[n] = ++ DC;
        for (rg int i = list[n], v; i; i = _n[i])
            if (i != l && i != (l ^ 1))
            {
                if (!dfn[v = _v[i]]) Dfs (v, i), cmin (low[n], low[v]);
                else if (!scc[v]) cmin (low[n], dfn[v]);
            }
        if (low[n] == dfn[n])
        {
            ++ SC;
            for (int r = n + 1; t && r != n; -- t) 
                r = sk[t], scc[r] = SC;
        }
    }
    
    int ev[Max * 20], en[Max * 20], el[Max * 10], ec, ed[Max * 20];
    
    inline void _In (int u, int v, int d)
    { 
        ev[++ ec] = v, en[ec] = el[u], el[u] = ec, ed[ec] = d; 
        ev[++ ec] = u, en[ec] = el[v], el[v] = ec, ed[ec] = d;
    }
    
    bool Find (int x, int y)
    {
        for (rg int i = el[x]; i; i = en[i])
            if (ev[i] == y) return true;
        return false;
    }
    
    void Tarjan ()
    {
        rg int i;
        for (i = 1; i <= N; ++ i) if (!dfn[i]) Dfs (i, 0);
        for (int n = 1; n <= N; ++ n)
            for (i = list[n]; i; i = _n[i])
                if (scc[n] != scc[_v[i]])
                    if (!Find (scc[n], scc[_v[i]]))
                    {
                        _In (scc[n], scc[_v[i]], _d[i]);
                    }
    }
    int Answer[Max];
    int dis1[Max], dis2[Max], pos1, pos2, Max1, Max2, pre[Max];
    void Gc1 (int n, int F)
    {
        for (rg int i = el[n], v; i; i = en[i])
            if ((v = ev[i]) != F) 
                dis1[v] = dis1[n] + ed[i], Gc1 (v, n);
        if (dis1[n] > Max1) Max1 = dis1[n], pos1 = n;
    }
    int f[Max];
    void Gc2 (int n, int F)
    {
        f[n] = F;
        for (rg int i = el[n], v; i; i = en[i])
            if ((v = ev[i]) != F) dis2[v] = dis2[n] + ed[i], Gc2 (v, n), pre[v] = n;
        if (dis2[n] > Max2) Max2 = dis2[n], pos2 = n;
    }
    bool isc[Max];
    inline int max (int a, int b) { return a > b ? a : b; }
    void GetAnswer ()
    {
        Gc1 (1, 0), Gc2 (pos1, 0); rg int i;
        for (i = pos2; i; i = pre[i]) 
            isc[i] = true;
        rg int n; int res = 0, j;
        for (i = 1; i <= SC; ++ i)
        {
            res = 0;
            for (n = i; !isc[n] && n; n = f[n])
            {
                for (j = el[n]; j; j = en[j])
                    if (ev[j] == f[n]) { res += ed[j]; break; }
            }
            res += max (dis2[n], Max2 - dis2[n]);
            Answer[i] = res;
        }
        for (i = 1; i <= N; ++ i)
            printf ("%d
    ", Answer[scc[i]]);
    }
    int main (int argc, char *argv[])
    {
        freopen ((Name + _I).c_str (), "r", stdin);
        freopen ((Name + _O).c_str (), "w", stdout);
        int x, y, M, z; read (N), read (M);
        for (rg int i = 1; i <= M; ++ i)
            read (x), read (y), read (z), In (x, y, z), In (y, x, z);
        
        Tarjan ();    
        
        GetAnswer ();
        
        return 0;
    }
  • 相关阅读:
    Django Rest Framework 视图和路由
    DRF 权限 频率
    DRF 版本 认证
    Serializers 序列化组件
    学DRF之前
    RESTful
    windows下vmware配置nat网络
    python之路——网络编程
    图片上传
    数据库基本设计规范:
  • 原文地址:https://www.cnblogs.com/ZlycerQan/p/7799580.html
Copyright © 2011-2022 走看看