zoukankan      html  css  js  c++  java
  • 按照Key合并DateFrame

    import pandas as pd
    
    left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                         'A': ['A0', 'A1', 'A2', 'A3'],
                         'B': ['B0', 'B1', 'B2', 'B3']})
    print('left
    ', left)
    right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                          'C': ['C0', 'C1', 'C2', 'C3'],
                          'D': ['D0', 'D1', 'D2', 'D3']})
    print('right
    ', right)
    result = pd.merge(left, right, on='key')
    print('result
    ', result)

    输出

    /Users/cloud/.conda/envs/auto/bin/python /Users/cloud/Downloads/project_static/PD/merge_key.py
    left
       key   A   B
    0  K0  A0  B0
    1  K1  A1  B1
    2  K2  A2  B2
    3  K3  A3  B3
    right
       key   C   D
    0  K0  C0  D0
    1  K1  C1  D1
    2  K2  C2  D2
    3  K3  C3  D3
    result
       key   A   B   C   D
    0  K0  A0  B0  C0  D0
    1  K1  A1  B1  C1  D1
    2  K2  A2  B2  C2  D2
    3  K3  A3  B3  C3  D3
    
    Process finished with exit code 0
    import pandas as pd
    
    df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3'],
                        'C': ['C0', 'C1', 'C2', 'C3'],
                        'D': ['D0', 'D1', 'D2', 'D3']},
                       index=[0, 1, 2, 3])
    
    print('df 1
    ', df1)
    
    df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                        'B': ['B4', 'B5', 'B6', 'B7'],
                        'C': ['C4', 'C5', 'C6', 'C7'],
                        'D': ['D4', 'D5', 'D6', 'D7']},
                       index=[4, 5, 6, 7])
    print('df2
    ', df2)
    
    df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
                        'B': ['B8', 'B9', 'B10', 'B11'],
                        'C': ['C8', 'C9', 'C10', 'C11'],
                        'D': ['D8', 'D9', 'D10', 'D11']},
                       index=[8, 9, 10, 11])
    print('df3', df3)
    frames = [df1, df2, df3]
    print('frame 123
    ', frames)
    result = pd.concat(frames, keys=['x', 'y', 'z'])
    print('xyz
    ', result)
    print('loc y
    
    ')
    print(result.loc['y'])
    
    df4 = pd.DataFrame({'B': ['B2', 'B3', 'B6', 'B7'],
                        'D': ['D2', 'D3', 'D6', 'D7'],
                        'F': ['F2', 'F3', 'F6', 'F7']},
                       index=[2, 3, 6, 7])
    result_d1_d4_sort = pd.concat([df1, df4], axis=1, sort=False)
    print('result_d1_d4_sort
    
    ', result_d1_d4_sort)
    
    result_d1_d4_join_inner = pd.concat([df1, df4], axis=1, join='inner')
    print('result_d1_d4_join
    
    ', result_d1_d4_join_inner)
    输出
    /Users/cloud/.conda/envs/auto/bin/python /Users/cloud/Downloads/project_static/PD/combine_index.py
    df 1
         A   B   C   D
    0  A0  B0  C0  D0
    1  A1  B1  C1  D1
    2  A2  B2  C2  D2
    3  A3  B3  C3  D3
    df2
         A   B   C   D
    4  A4  B4  C4  D4
    5  A5  B5  C5  D5
    6  A6  B6  C6  D6
    7  A7  B7  C7  D7
    df3       A    B    C    D
    8    A8   B8   C8   D8
    9    A9   B9   C9   D9
    10  A10  B10  C10  D10
    11  A11  B11  C11  D11
    frame 123
     [    A   B   C   D
    0  A0  B0  C0  D0
    1  A1  B1  C1  D1
    2  A2  B2  C2  D2
    3  A3  B3  C3  D3,     A   B   C   D
    4  A4  B4  C4  D4
    5  A5  B5  C5  D5
    6  A6  B6  C6  D6
    7  A7  B7  C7  D7,       A    B    C    D
    8    A8   B8   C8   D8
    9    A9   B9   C9   D9
    10  A10  B10  C10  D10
    11  A11  B11  C11  D11]
    xyz
             A    B    C    D
    x 0    A0   B0   C0   D0
      1    A1   B1   C1   D1
      2    A2   B2   C2   D2
      3    A3   B3   C3   D3
    y 4    A4   B4   C4   D4
      5    A5   B5   C5   D5
      6    A6   B6   C6   D6
      7    A7   B7   C7   D7
    z 8    A8   B8   C8   D8
      9    A9   B9   C9   D9
      10  A10  B10  C10  D10
      11  A11  B11  C11  D11
    loc y
    
    
        A   B   C   D
    4  A4  B4  C4  D4
    5  A5  B5  C5  D5
    6  A6  B6  C6  D6
    7  A7  B7  C7  D7
    result_d1_d4_sort
    
          A    B    C    D    B    D    F
    0   A0   B0   C0   D0  NaN  NaN  NaN
    1   A1   B1   C1   D1  NaN  NaN  NaN
    2   A2   B2   C2   D2   B2   D2   F2
    3   A3   B3   C3   D3   B3   D3   F3
    6  NaN  NaN  NaN  NaN   B6   D6   F6
    7  NaN  NaN  NaN  NaN   B7   D7   F7
    result_d1_d4_join
    
         A   B   C   D   B   D   F
    2  A2  B2  C2  D2  B2  D2  F2
    3  A3  B3  C3  D3  B3  D3  F3
    
    Process finished with exit code 0

    lambda 连接
    import pandas as pd
    
    df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': ['q1', 'q2']})
    print('fist
    ', df)
    df['YearQuarter'] = df[['Year', 'Quarter']].apply(lambda x: '{}--{}'.format(x[0], x[1]), axis=1)
    print('new df
    ', df)

    输出

    /Users/cloud/.conda/envs/auto/bin/python /Users/cloud/Downloads/project_static/PD/format.py
    fist
        Year Quarter
    0  2014      q1
    1  2015      q2
    new df
        Year Quarter YearQuarter
    0  2014      q1    2014--q1
    1  2015      q2    2015--q2
    
    Process finished with exit code 0

    merge suffixes

    import pandas as pd
    import numpy as np
    
    df1 = pd.DataFrame({'fruit': ['apple', 'banana', 'orange'] * 3,
                        'weight': ['high', 'medium', 'low'] * 3,
                        'price': np.random.randint(0, 15, 9)})
    print('df1', df1)
    df2 = pd.DataFrame({'pazham': ['apple', 'orange', 'pine'] * 2,
                        'kilo': ['high', 'low'] * 3,
                        'price': np.random.randint(0, 15, 6)})
    
    print('df2',df2)
    out = df1.merge(df2, left_on=('fruit', 'weight'), right_on=('pazham', 'kilo'), how='inner',
                    suffixes=('_left', '_right')).head(10)
    
    print('out', out)
    输出
    /Users/cloud/.conda/envs/auto/bin/python /Users/cloud/Downloads/project_static/PD/combine_data.py
    df1     fruit  weight  price
    0   apple    high      1
    1  banana  medium     12
    2  orange     low     11
    3   apple    high     13
    4  banana  medium      6
    5  orange     low     13
    6   apple    high      6
    7  banana  medium     13
    8  orange     low      6
    df2    pazham  kilo  price
    0   apple  high      9
    1  orange   low      8
    2    pine  high      7
    3   apple   low     11
    4  orange  high      3
    5    pine   low      9
    out     fruit weight  price_left  pazham  kilo  price_right
    0   apple   high           1   apple  high            9
    1   apple   high          13   apple  high            9
    2   apple   high           6   apple  high            9
    3  orange    low          11  orange   low            8
    4  orange    low          13  orange   low            8
    5  orange    low           6  orange   low            8
    
    Process finished with exit code 0

    initialising _dictionary
    # Python code to demonstrate
    # to split dictionary
    # into keys and values
    
    # initialising _dictionary
    ini_dict = {'a': 'akshat', 'b': 'bhuvan', 'c': 'chandan'}
    
    # printing iniial_dictionary
    print("intial_dictionary", str(ini_dict))
    
    # split dictionary into keys and values
    keys = []
    values = []
    items = ini_dict.items()
    for item in items:
        keys.append(item[0]), values.append(item[1])
    
    # printing keys and values separately
    print("keys : ", str(keys))
    print("values : ", str(values))
    输出
    /Users/cloud/.conda/envs/auto/bin/python /Users/cloud/Downloads/project_static/debug/split_items.py
    intial_dictionary {'a': 'akshat', 'b': 'bhuvan', 'c': 'chandan'}
    keys :  ['a', 'b', 'c']
    values :  ['akshat', 'bhuvan', 'chandan']
    
    Process finished with exit code 0

    zip(*ini_dict.items())
    # Python code to demonstrate
    # to split dictionary
    # into keys and values
    
    # initialising _dictionary
    ini_dict = {'a': 'akshat', 'b': 'bhuvan', 'c': 'chandan'}
    
    # printing iniial_dictionary
    print("intial_dictionary", str(ini_dict))
    
    # split dictionary into keys and values
    keys, values = zip(*ini_dict.items())
    
    # printing keys and values separately
    print("keys : ", str(keys))
    print("values : ", str(values))

    输出

    /Users/cloud/.conda/envs/auto/bin/python /Users/cloud/Downloads/project_static/debug/split_zip_dict.py
    intial_dictionary {'a': 'akshat', 'b': 'bhuvan', 'c': 'chandan'}
    keys :  ('a', 'b', 'c')
    values :  ('akshat', 'bhuvan', 'chandan')
    
    Process finished with exit code 0

    拼接字典JSON合并LIST

    test_list = [{'userId': '55b6a1da-01d9-4ae6-9ba8-6ebd2a485ca5'}, {'userId': 'ac05eb4d-1e2f-4065-9f45-33f6f4579448'}]
    combine_list = []
    ids = ['55b6a1da-01d9-4ae6-9ba8-6ebd2a485ca5','ac05eb4d-1e2f-4065-9f45-33f6f4579448', 'xxxxx-1e2f-4065-9f45-33f6f4579448' ]
    x = {}
    for i in ids:
        # for x in range(len(ids)):
            x[f'userId'] = i
            combine_list.append(x.copy())
            print(combine_list)

    输出

    /Users/cloud/.conda/envs/auto/bin/python /Users/cloud/Downloads/project_static/debug/for_dict.py
    [{'userId': '55b6a1da-01d9-4ae6-9ba8-6ebd2a485ca5'}]
    [{'userId': '55b6a1da-01d9-4ae6-9ba8-6ebd2a485ca5'}, {'userId': 'ac05eb4d-1e2f-4065-9f45-33f6f4579448'}]
    [{'userId': '55b6a1da-01d9-4ae6-9ba8-6ebd2a485ca5'}, {'userId': 'ac05eb4d-1e2f-4065-9f45-33f6f4579448'}, {'userId': 'xxxxx-1e2f-4065-9f45-33f6f4579448'}]
    
    Process finished with exit code 0
  • 相关阅读:
    [No0000131]WCF压缩传输方案整理
    [No0000128]SQL纵表与横表互转
    [No0000127]WCF安全体系netTCPBinding绑定
    [No0000126]SSL/TLS原理详解与WCF中的WS-Security
    [No0000125]WCF安全体系
    [No0000124]WPF 扩展控件Behavior的几种方式
    [No0000123]WPF DataGrid Columns Visibility的绑定
    [No0000BB]ReSharper操作指南4/16-配置ReSharper代码快修与导航
    [No0000122]Donet 中间语言,反编译 .net IL 指令速查
    [No0000B2]ReSharper操作指南3/16-配置ReSharper与代码校错
  • 原文地址:https://www.cnblogs.com/a00ium/p/13877503.html
Copyright © 2011-2022 走看看